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Abstract. This paper presents high-speed and low-size assembly im-
plementations of the 80-bit version of the PRESENT cipher for the
(Tiny)AVR family of microcontrollers. We report new speed and size
records for our implementations, with the speed-optimized version achiev-
ing a full encryption in 8721 clock cycles and the size-optimized version
compressing the cipher down to 272 bytes; the previous state of the art
for (Tiny)AVR achieved 10723 clock cycles for encryption with a size of
936 bytes. Along with the two implementation extrema (speed and size
optimized versions), we offer insight into techniques and representations
that show the speed/area tradeoffs and provide intermediate solutions
for various configurations.
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1 Introduction

Modern society is constantly witnessing an extensive and large scale deploy-
ment of tiny computing devices. Information processing and wireless commu-
nication are being thoroughly integrated into everyday objects and activities,
developing a large distributed mobile infrastructure and ushering in the era of
ubiquitous computing. RFID tags attached to products, cardiac pacemakers,
fire-detecting sensor nodes and the like need to operate securely under particu-
larly restricted conditions, namely low battery life, small processing power and
bandwidth-demanding ad-hoc network protocols. To achieve sustainable security
in this new landscape, researchers have developed new cryptographic primitives
and techniques, namely lightweight cryptographic ciphers such as PRESENT [5],
Klein [11], LED [13] and others.

The majority of these ciphers was designed with hardware performance in
mind, leaving most software implementations relatively inefficient. For instance,
the AVR-Crypto-Lib [21] often resorts to C language implementations, resulting
in 100.000 clock cycles for a single encryption with PRESENT. AVR microcon-
trollers are often encountered regarding the Internet of Things and ubiquitous
computing, thus they are an interesting platform on which to enable and op-
timize lightweight ciphers. The University of Louvain has initiated a project
to draft efficient assembly implementations of various lightweight ciphers on
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resource-constrained AVR, devices to make fair comparisons about their relative
efficiency. Resulting from this project is the state of the art in both speed and
size: an implementation [8] which achieves an encryption with PRESENT in
10723 clock cycles in 936 bytes.

Our contribution. This paper describes the details of a speed optimized [20]
and a size-optimized [22] implementation of the PRESENT cipher on the AT-
tiny45, attained with the aid of algorithmic improvements and efficient program-
ming techniques. Our speed-optimized version improves the state of the art [§]
by an 18 % reduction in clock cycles, while the size-optimized version is 70 %
smaller.

Algorithmic improvement:

— A merged SP layer, i.e. combining the substitution and permutation layer of
the cipher in order to construct lookup tables that remove the time-consuming
permutations [10,12]. This optimization constitutes the core of the achieved
speed improvement.

Programming improvements:

— Squared S-Box representations, i.e. S-Boxes which are custom-made for fast
access in the AVR 8-bit architecture, also used by Eisenbarth [8].

— Compact S-Box representations, i.e. minimal footprint S-Boxes that reduce
the implementation size.

— Minimal key register rotations, allowing the key update procedure to complete
in fewer instructions.

— Memory access optimizations, grouping memory transactions to improve speed.

— Algorithm serialization, by keeping part of the state in SRAM while we op-
erate on fewer registers.

— Indirect register access to let loops drive repeated operations on CPU regis-
ters.

— Use of the stack to store intermediate values to avoid using more dedicated
registers.

— Code restructuring and efficient procedure callings.

2 Background

2.1 PRESENT Cipher

PRESENT [5] is an ultra-lightweight, 64-bit symmetric block cipher, using 80-
bit or 128-bit keys. It is based on a substitution/permutation network and it is
named as a reference to Serpent [2] due to its similar constructs. As of 2012,
PRESENT (among other ciphers) was adopted by ISO as a standard for a light-
weight block cipher (ISO/IEC 29192-2:2012 [17]). The full algorithm has so far
been resistant to attempts at cryptanalysis, although the most successful attack
has shown that up to 15 of its 31 rounds can be broken with 2356 plaintext-
ciphertext pairs in 22 operations [1,7,19].
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PRESENT uses exclusive-or as its round key operation, a 4-bit substitu-
tion layer, a 4-bit period bit position permutation network in 31 rounds and
a final round key operation. Key scheduling is a combination of bit rotation,
S-Box application and exclusive-or with the round counter. Constructs found
in PRESENT are also encountered in SPONGENT [4], in hash function con-
structs based on block ciphers as proposed by Hirose [6,14,15] (H-PRESENT)
and in the similar Maya [9] or generalized SMALLPRESENT [18]. Thus the
optimizations presented here can also be of interest with respect to the imple-
mentations of these ciphers. In our approach, we have implemented PRESENT
for the recommended 80-bit key size in AVR assembly in two versions, opti-
mized for maximal speed and minimal size. Support for 128-bit keys was also
added to the size-optimized implementation as the required extra registers be-
came available through optimizations, but we will focus on the implementation
of the variant with 80-bit keys.

2.2 PRESENT Algorithm

The cipher’s key register is supplied with the 80-bit cipher key and in every
encryption round the first 64 bits of the 80-bit key register form the round key. To
encrypt a single 64-bit block, during each encryption round, PRESENT applies
an exclusive-or (XOR) with the current round key followed by a substitution
and a permutation layer. The substitution layer applies nibble-wise (4-bit) S-
Boxes to the state, while the permutation layer re-arranges the bits in the state
following a 4-bit period. Key scheduling is done by rotating the key register 61 bit
positions to the left, applying the S-Box to the top nibble of the key register and
XORing bits 15 through 19 with the round counter. There is a total of 31 such
rounds and finally the round key is applied one last time (Fig. 1).

2.3 The 8-bit Family of TinyAVR Microcontrollers

Atmel offers a wide range of 8-bit microcontrollers, including high performance
devices (ATxmega), mid-range devices (ATmega) and low-end devices with lim-
ited memory, storage and processing power (ATtiny). Common applications of
AVR microcontrollers include smart cards, motor control systems, medical ap-
plications et cetera.

Our focus is on the resource-constrained ATtiny architecture, which typically
features less than 1 KB of static RAM (SRAM) and flash storage ranging from
1 to 8 KB. The architecture uses 32 general-purpose registers, R0-RS31.

Several registers have special characteristics, namely registers R0
through R15 can not be accessed by instructions that provide an immediate
value as an operand, i.e. you can only perform memory access from these reg-
isters. In addition, register pairs R27:R26 (denoted as X), R29:R28 (denoted
asY) , and R31:R30 (denoted as Z) can access the SRAM. The Y register can
also be used for indirect register addressing, the Z register can also access the
flash storage and be used for indirect jumps and calls. Instructions using these 3
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Fig. 1. Schematic of the PRESENT cipher. It consists of 31 rounds, including XOR
round key application, nibble-wise substitution, bit position permutation and key up-
date.

pointer register pairs also allow post-increment and pre-decrement of the pointer.
At all times, the 6 special registers can be utilized as general-purpose registers.

The ATtiny instruction set consists of the basic 90 single-word instructions
found in all AVR architectures. However, due to the limited size of its core, it
does not support the extended instruction set which includes multiplication, in
contrast with the ATmega architecture.

ATtiny configuration. We perform all simulations on the ATtiny45, which has
a maximum clock frequency of 20 MHz, 256 bytes of SRAM and 4 KB of flash
storage.

Radix-2% representation. The PRESENT cipher requires representing in-
tegers of size 64 and 80bits. Thus, we split the number into 8-bit compo-
nents, using radix-2% and an m-bit integer is represented as n = [m/8] bytes
(zo,@1,...,Tn_1) such that x = Y7 x; 28

3 High-Speed Implementation

3.1 PRESENT S-Box and P-Layer Implementation

In this section we examine the S-Box of the PRESENT cipher from the speed
perspective, using lookup tables, and we offer several variations, utilizing the
speed-area trade-off. We analyze the original S-Boz, identify its performance
issues and suggest two possible lookup table representations (with 8 and 16 bytes
respectively). Subsequently, we expand it to the faster, yet space-demanding
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Table 1. The original S-Box of the PRESENT cipher.

x ©0 1 2 3 4 5 6 7 8 9 A B C D E F
Sx] ¢ 5 6 B 9 0 A D 3 E F 8 4 17 1 2

Table 2. The packed representation of the original S-Box, using 8 bytes. Each table
column represents two substitutions. This would give a size optimization of 8 bytes to
begin with, but considerations for unpacking code apply. (See Sect. 4.2.)

x 01 23 15 67 89 AB CD EF
Si C5 6B 90 AD 3E F8 A7 12

(256 bytes) Squared S-Box. In the last section, we examine the combination of
the S-Bozx and the permutation layer, resulting in a very large lookup table
(1024 bytes) that substantially boosts performance.

Original S-Box. The original S-Box, presented by Bogdanov et al. [5] consists
of 16 different substitutions, each with a 4-bit input and a 4-bit output, as shown
in Table 1.

Representation. If we aim for a particularly small size footprint, it is possible
to use either a packed or an unpacked representation of the original S-Box. The
original, unpacked version stores the lookup table in 16 bytes, where every 4-bit
input to 4-bit output substitution is stored using 8 bits of space (i.e. there exists
redundancy of in the representation). The packed version, stores two 4-bit input
to 4-bit output substitutions using 8 bits, i.e. without any redundancy, resulting
in an 8 byte lookup table.

Performance. The core performance issue regarding the 4-bit S-Box is the
penalty in accessing it, if stored in a lookup table. The AVR architecture is
designed to enable fast access for 8-bits at a time. Thus, a lookup table of the
original S-Box is rather small (16 bytes for an unpacked version, 8 bytes for a
packed one), but we can assume it is also relatively inefficient speed-wise due
to the overhead operations that need to take place before and after each table
lookup. Surely the packed S-Box (Table2) is the least speed-efficient variant,
since after the 4-bit lookup we also have to extract the upper or lower half. This
issue is not encountered in the unpacked version, which makes better use of the
AVR 8-bit architecture. However, performance is not optimal due to the fact
that we only substitute 4 bits at a time, while we use 8-bit operations, i.e. the
redundant representation results in more memory accesses than needed.

Squared S-Box. A solution to the aforementioned performance problem is to
construct a new lookup table that: (a) is custom made for the 8-bit AVR archi-
tecture, like the unpacked S-Box and (b) uses a non-redundant representation
similar to the packed S-Box.

Representation. In Table 3, we demonstrate a Squared S-Bozx, which uses an
8-bit input and produces an 8-bit output. Within an 8-bit space, we can contain
two 4-bit substitution values and the number of possible substitution values is
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Table 3. The 256-byte Squared S-Box. It substitutes one byte at a time, without any
overhead or redundancy.

X 00 01 02 03 o 0C 0D 0E OF
SKX] cC C5 (6 CB o C4 C7 Cl C2
x 10 11 12 13 o 1C 1D 1E 1F
S[x] 5C 55 56 5B o 54 57 51 52
x FO F1 F2 F3 o FC FD FE FF
S[x] 2C 25 26 2B o 24 27 21 22

16, thus the total size of the lookup table is 16 - 16 = 256 bytes. As a result,
there is no need for overhead computation and the substitution consists of a
single lookup. This approach has also been followed before by Eisenbarth [8].

Performance. The Squared S-Box described is an efficient and viable solution
with respect to the cipher’s substitution layer. It is custom made for the 8-
bit AVR architecture and allows us to perform byte substitutions with a single
flash memory lookup. Furthermore, it is relatively size-efficient, consisting of
256 bytes. We consider it could almost be transfered to ATtiny45 SRAM from
flash memory during the initialization process of the algorithm, but we would
be left without any stack space and therefore it would certainly be a special
purpose implementation. That memory transfer is viable for applications that
do dedicated encryption or decryption (provided we are left with some stack
space for the workings of the rest of the algorithm). The instruction to load
from flash (1pm) takes 3 clock cycles, whereas loading from or saving to SRAM
(1d) takes only 2. Given the fact that the block size of the PRESENT cipher
is 64 bits, it requires 64/8 = 8 S-Box lookups per round. The cipher consists
of 31 rounds so a full encryption requires 8 - 31 = 248 S-Box applications. If
an application would singularly encrypt or decrypt, we could save 248 cycles
per encryption after an initial (3 + 2) - 256 = 1280 clock cycles. That means
that the processing penalty to load a 256 byte table from flash storage to SRAM
would not be compensated until over 5 encryptions or decryptions were computed
sequentially, so this approach is not feasible for the general case of intermixed
encryption and decryption.

Merged SP Lookup Table. Although the Squared S-Box lookup table solu-
tion is viable for the PRESENT cipher, we need a speed optimization for the
most complex part of the PRESENT algorithm: the permutation layer. In con-
trast to hardware implementations, where it is a trivial rewiring of outputs,
most software implementations require a large number of bit rotation and move
operations. The AVR architecture is not capable of performing fast shifts and
rotations (compared to for instance the ARM11 processors, which can do shifts
and rotations for free), i.e. an n-bit shift requires n clock cycles, and thusly we
have to look for alternatives. In this direction, work by Hutter and Schwabe [16]
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mov ZH, high ; load high part of Z address
mov ZL, low ; load low part of Z address
Ipm register , Z ; load from Z addresses into register

Fig. 2. Flash memory is addressed through 16-bit pointers. We aim to keep changes in
the high byte to a minimum.

on ATmega! suggested the usage of multiplications instead of rotations/shifts,
however this is not viable on ATtiny chips due to the fact that they do not
possess native multiplication instructions.

Representation. The fastest approach that we identified for the permutation
layer is the idea developed by Zheng Gong and Bo Zhu [10,12]. Due to the
adaptation of this novel approach in the AVR architecture, we are able to improve
performance over the state of the art [8]. Specifically, Gong and Zhu exploited
the internal structure of the permutation layer, i.e. the fact that every output of
a 4-bit S-Box will contribute one bit to the cipher. The underlying pattern for
the permutation is the following:

for k : old position, 1 : new position, | = f(k) =16 - (k mod 4) + (k +4)

Thus, the first 2bits of the output are derived from the first two 4-bit S-
Boxes, i.e. from the first byte of the previous state. Using these observations, they
crafted four 256-byte lookup tables (1024 bytes in total) that merge the S-Box
and the permutation layer and as a result, the whole SP network is performed
via table lookups.

Performance. The 1024 byte lookup tables eliminate the need for an indepen-
dent permutation layer, providing us with the fastest available solution. On the
downside, we have to perform one lookup for every two bits, resulting in 32
lookups for a 64-bit state (compared to the Squared S-Box that required only
8 lookups for a 64-bit state). Moreover, we need 1024 bytes to store the tables,
thus it is not possible to transfer them to the SRAM on our test platform. The
theorized 33 % speedup considered with using SRAM instead of flash storage
is only possible in an AVR microcontroller with at least 1024 bytes of internal?
SRAM, for instance ATtiny1634.

Memory Optimizations for Lookup Tables. All the aforementioned solu-
tions with respect to substitution and/or permutation rely heavily on lookup
tables. In order to decrease the computational penalty of the table lookups, we
performed several code-level optimizations. In Fig.2 we demonstrate the code
required to perform a single table lookup from flash memory.

The lookup operation consists of two mov and one 1pm instruction. Memory
is addressed using 16-bit pointers, so the first mov loads the high part, while the
second mov loads the table index that will be accessed.

! Benchmarking was performed on ATmega2560.
2 Additional external SRAM is not an option, since it is at least as slow as flash
memory.
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Table alignment. We aim to keep the changes required in the high part (ZH)
to a minimum. Thus, we align the four 256-byte tables required for the merged
SP approach in Sect. 3.1 such that they can be accessed by using only the low
part (ZL) register as an index and keeping ZH unchanged. Elaborating, the four
lookup tables start from 0x0600, 0x0700, 0x0800, 0x0900 respectively and
thus, the 8 high bits of the address part (0x06, 0x07, 0x08, 0x09) remain the
same while the 8 low bits are sufficient to act as the table index, ranging from 0
to 255 (0x00 to 0xFF).

Memory access grouping. Performing two lookup operations in two different
tables requires a total of 10 clock cycles (2 mov to change the high part of the
operation, 2 mov to change the index and 2 1pm to perform the actual lookup).
However, performing two lookup operations on the same table requires a total of
8 clock cycles (2 mov for the index, 2 1pm for the lookup), since the high part of
the memory address remains the same. Thus, we we try to perform the maximum
amount of grouped table lookups, given the limited number of registers, since
within each group, ZH remains the same. For instance the following sequence of
operations, lookupTablel (i), lookupTable2(k), lookupTablel(j), lookup Table2(m)
will transform to lookupTablel(i), lookupTablel(j), lookupTable2(k), lookupT-
able2(m) in order to group memory access.

3.2 Key Update Implementation

This section focuses on implementing the key scheduling/update process of the
PRESENT cipher efficiently. The key update function of the PRESENT cipher
consists of three operations, namely, key rotation, key substitution and key XOR
the round counter. We present the optimizations performed in the following
subsections.

Key Rotation. The algorithm specifies that the key must be rotated by 61 bits
to the left. Given the fact that rotations/shifts are computationally expensive
in the AVR architecture, we transform 61 left rotations to 19 right rotations,
which can be further reduced to 16 right rotations and 3 right rotations. The 16
right rotations can be easily performed by using the mov instructions on register
level, i.e. rotate all the bits inside a register by moving the contents to the
previous register used in our representation, an approach which is preferable to
single rotations via the bit-level instructions. Only the 3 remaining rotations are
carried out with the logical instructions for right rotation and shifting (ror and
shr).

Key Substitution. The highest 4 bits of the 80-bit key used by the PRESENT
cipher, must be substituted via the S-Box. To avoid 4-bit memory access or
redundancy (Sect. 3.1), we construct a special-purpose Squared S-Box that sub-
stitutes the 4 high bits of the 8-bit input, while the low 4 bits remain unchanged.
The resulting table applies a substitution operation on the upper nibble which
takes only a single lookup operation. Should we encounter space constraints, it
is possible to replace the Squared S-Box with the original, unpacked one; the
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key substitution occurs only once per round, so the performance loss incurred
by the unpacked S-Box is relatively small.

Key Exclusive-OR Operation. The algorithm specifies that the key bits 15,
16, 17, 18, 19 must be XORed with the round counter. The issue is that -under
the current representation- bits 0...7 will be stored in R0, bits 8...15 will be
stored in R1 and bits 16...23 will be stored in R2. As a result parts of the
round counter need to be XORed with different parts of two separate registers,
namely the counter needs to be XORed with both R1 and R2. Similarly to
Eisenbarth [8], we perform the XOR operation before the key rotation, thus the
bits that are operated on are bits 34,35,36,37,38 which span a single register
(under the previous representation they are located in R4). This restructuring
of the algorithm, i.e. performing the XOR operation before the key rotation,
does not affect the outcome or security of the algorithm.

Latency vs. Throughput. The implementations presented focus on reducing
the cost of a single encryption. Thus, it can also be viewed as a low-latency
implementation of PRESENT. Should we loosen up on the latency requirement,
we can achieve increased throughput. Future work aims to perform multiple en-
cryptions at a time, by using the bitslicing technique [3], which largely reduces
the cost of permutations.

4 Size-Optimized Implementation

Here we will list some of the size improvements we were able to apply to the
PRESENT algorithm. While these modifications make the algorithm operate
more slowly, the reduction in size would allow the cipher to be included in
microcontrollers with smaller available code area. Our version requires 128 AVR
instructions (256 bytes of code) for both the encryption and decryption routines,
plus two times 8 bytes for packed tables of S-Box values at memory addresses
0x100 and 0x200. We believe this should be sufficiently small for the code to
be included in an AVR machine with 1K of available Flash storage, while still
allowing almost three quarters of the available area to be devoted to application-
specific code.

Unfortunately, every opcode in the AVR instruction set is expressed using
one or more 16-bits words, so while using only the single-word instructions of the
ATtiny there is no further possibility to exchange any instructions for equivalent
smaller ones (such as for example add Rd, 1 being more concisely expressed as
inc Rd on x86 machines). Furthermore the AVR employs a Harvard architecture,
where there is a strict separation between data and code memory; this prevents
us from dynamically computing new opcodes in memory to be executed later.
Finally we note there are no ‘bulk’ instructions which operate on several registers
at once.

However, we do have access to some instructions that are specific to the AVR
architecture and are uniquely suited to making parts of the code more condensed
by virtue of their expressiveness, such as the swap and cbr instructions. We also
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have all kinds of branching instructions at our disposal that branch based on
values in the state register (SREG) which we can explicitly or implicitly modify.
We can use the stack to make procedure calls or as temporary storage, and finally
have the powerful option of adressing the CPU registers indirectly through the
Y pointer.

4.1 Serialization and SRAM Use

The greatest size optimization we have implemented is serialization of the algo-
rithm, keeping most of the state in SRAM while we operate on only one byte
of state wherever possible. This reduces the instruction count on all parts of
the algorithm. It also allows us to make use of fewer dedicated registers.keeping
scheduled keys entirely in registers after setup. The only procedure where this
approach was not successful is the permutation layer, for which we chose to
reserve 4 output registers as we believe it allows us to apply the 4-bit period
permutation in software with the most size-efficiency.

By requiring only 4 dedicated registers to keep a partial block state, and 6
to keep the rest of the algorithms’ state, we were left with exactly 16 of the 32
general purpose registers available to keep the key register (as we rely on the
6 registers for X,Y,Z to navigate the SRAM, indirectly addressed registers and
flash storage respectively.) This means support for 128-bit keys was able to be
added to the implementation at no extra cost.

4.2 S-Box Packing

The PRESENT S-Boxes work on 4-bit nibbles, but defining a table of nibbles
in the code at first seemed less size-efficient than packing the nibbles into bytes
to be unpacked. This would save 8 bytes per S-Box table to start with, but we
need 4 to 7 extra instructions depending on whether or not we care about timing
attacks to unpack the nibbles which diminishes the size benefit to 2 bytes of code.
See Fig.3 and Table 2.

The S-box construct replaces a single low nibble in the output. The simplest
and most size-efficient way to apply it to a byte in code consists of (1) calling it,
(2) swapping the resulting nibbles, (3) calling it again for the other nibble and
then (4) swapping the nibbles back. We can call this code starting from step 2 to
apply the S-box to only the high nibble of a byte, as is required when scheduling
new round keys.

4.3 Permutation Layer

The code to apply the bit position permutation to the state in software bor-
rows heavily from the AVR implementation of PRESENT drafted in Louvain by
Eisenbarth et al. [8]. Since the permutation follows a 4-bit period in the input,
their choice to use 4bytes of I/O when rotating bits off of registers into corre-
sponding new positions seems quite efficient. In the Louvain implementation one
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unpack_sBox:

asr ZL ; halve input, take carry
Ipm SBOX.OUTPUT, Z ; get S—Box output
brcs odd_unpack ; branch depending on carry
even_unpack:
swap SBOX_OUTPUT ; swap nibbles in S—Box output
rjmp unpack
odd_unpack:
nop ; guard against timing attacks
nop

unpack:
cbr SBOX.OUTPUT, 0xf0 ; clear high nibble in S—Box output

Fig. 3. Loading and unpacking bytes into nibbles in a constant cycle count takes us
8 instructions whereas loading unpacked nibbles takes us only 1. The net gain is only
2 bytes of code.

block:
set ; set T flag
fall through
redo_block:
instructions here happen twice when called from block

brtc continue i break if T flag cleared

clt ; clear T flag

rimp redo_block ; redo this block
continue:

ret

Fig. 4. A construct that uses the state register to re-do a block twice with code execut-
ing before, after and in between, allowing 2 executions of the block without requiring
access to the stack to store return addresses.

bit is rolled off from 4 state registers into one output register and this block is
done twice, completing one output byte.

This implementation of the permutation layer requires availability of 4 bytes
of temporary storage for half of the permuted state, which we save to the stack
before applying the permutation to the other 4 bytes of the state. The construct
in Fig. 4 allows the implementer to let a block of code be executed twice, while
allowing them to take control of the machine before, after and in between these
code blocks. As you can see this takes 4 instructions, whereas a rcall, ret con-
struction would take us only 3, but this construct doesn’t use the stack which
means we can keep our intermediate values there rather than requiring 4 more
dedicated registers or make more complicated use of the SRAM.

The 4 extra registers that became available through this approach allowed us
to implement support for 128-bit keys while keeping the scheduled round keys
entirely in CPU registers at no extra size cost. This construct does not affect
the cycle count relative to the state or input.

Rather than using specialized code to invert this permutation when decrypt-
ing, we use the PRESENT author’s design of the bit permutation to undo it by
applying it twice more (that is P(P(P(7))) = ¢ for each bit position 7).
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4.4 Indirect Register Access

The AVR platform allows the CPU registers to be addressed indirectly, meaning
we can use a pointer (Y) in memory space to interact with them. We use the
feature to load all 10 or 16 of the dedicated key registers in a loop, to iterate
over them while applying the round key to the state in SRAM, and to rotate the
key registers. This last optimization proved to be devastating to performance
compared to inlined rotation of the registers, which is why we added an option
to configure either approach.

Doing these operations in a loop which iterates over registers results in
smaller code, and allows us to rotate an arbitrary number of registers at a fixed
instruction cost. Faster (inlined) rotation makes the implementation about 4
times faster and requires 2/8 extra instructions depending on the configured key
size.

4.5 Round Key Application and Key Scheduling

The round key is applied to the state in the SRAM by reading, XORing and
writing one byte to/from a register at a time. The use of indirect register access
allows us to iterate through the key bytes in CPU registers while iterating the
state bytes in SRAM.

When scheduling keys, we still apply the exclusive-or to part of the key
register in the ideal position (i.e. where the bytes of the key register line up with
the round counter register), as explained in Sect. 3.2.

The inverse key scheduling procedure is only needed in the decryption rou-
tine, so we were able to inline it into the decryption round.

4.6 Limits Encountered

Although S-Box application and round key application always happen close to
each other and have the same SRAM access pattern, the varying order in which
they are applied in encryption/decryption rounds, or the omission of the S-Box
application in the final step makes it impossible to combine the two steps into
one procedure that makes PRESENT smaller.

It is possible to save a few instructions by iterating through the state in
SRAM from wherever the X pointer is located rather than rewinding it to the
start of the block in every round procedure of the algorithm. Still, the varying
order in which they are applied in the encryption/decryption rounds makes it
impossible to do so for the general case in smaller code.

The choice to rewind to the start of the block places the SRAM pointer back
to the same address as before encryption or decryption, which seems like a good
default for real-life use and also allows all round procedures to be callable from
external applications, which seemed more desirable than having them rely on
‘hidden’ state which affects their behaviour.
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Table 4. Speed (in clock cycles) and size (in bytes) comparisons to existing implemen-
tations of PRESENT for the AVR architecture, ordered by size, speed.

Encryption Decryption Size

Papagiannopoulos [20] 8721 - 1794
AVR Crypto-lib [21] 105796 151624 1514
Eisenbarth [8] 10723 11239 936
Verstegen [22]
Inlined rotation, unpacked S-Boxes (128-bit) 64506 119626 292
Inlined rotation (128-bit) 67854 123346 290
Inlined rotation, unpacked S-Boxes 52622 73952 280
Inlined rotation 55784 77300 278
Unpacked S-Boxes 186883 250032 274
Unpacked S-Boxes (128-bit) 278189 568010 274
Default 190045 253380 272
Default (128-bit) 281537 571730 272

4.7 Using the Code for Specific Applications

While the attained size of our implementation of PRESENT should suffice for
use in real-world applications, most of the procedure calls can be inlined when
only encryption or decryption is required in the application. If only encryption
is required, the inverse S-Box and S-Box unpacking code can be omitted as well.

As mentioned in 4.4, the key register rotation procedure can be configured
to either use indirect register addressing, or be inlined at a cost of 4/16 extra
bytes depending on configured key size.

5 Conclusion

We’ve compared our results to the existing AVR implementation by Eisenbarth
et al [8] and the GNU AVR-Crypto-Lib (as a standard C reference) [21]. We
are pleased to announce we were able to reduce the code size by 70 % and gain
18 % speed increase (Table4). Having access to a larger SRAM could allow the
lookup tables for the speed-optimized version to incur a lower overhead, and
reduce an estimated 992 cycles per encryption (12 %). Overall, we managed to
push the limits of the PRESENT implementation and establish a wide spectrum
of techniques to enable speed and size efficiency.
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