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Abstract. Industrial Control Systems are under increased scrutiny. Their security is histori-
cally sub-par, and although measures are being taken by the manufacturers to remedy this, the
large installed base of legacy systems cannot easily be updated with state-of-the-art security
measures. We propose a system that uses electromagnetic side-channel measurements to detect
behavioural changes of the software running on industrial control systems. To demonstrate the
feasibility of this method, we show it is possible to profile and distinguish between even small
changes in programs on Siemens S7-317 PLCs, using methods from cryptographic side-channel
analysis.
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1 Introduction

Industrial control systems (ICS) are used to manage most of our critical infrastructures. With the
move toward more centralized control using IP-based networks, these systems, which historically
have not needed advanced protection mechanisms, are opened to a wider range of attack scenarios.
One such scenario is an attacker modifying the software running on the system, e.g. to perform
a long-running attack on the industrial process being controlled, as happened with Stuxnet in the
uranium enrichment facilities in Natanz; or in preparation for a later, sudden attack that takes down
a significant part of the electricity grid, as happened in Ukraine in 2015 and 2016.

In general, an operator of ICSs would like to prevent compromised software from being installed.
Solutions for this can be found in software integrity verification, and software inspection. Software
integrity can be determined by e.g. taking a signed software image and verifying the signature with
a trusted platform module.

Prevention of system compromise through software inspection is a technique widely used, with
varying success, in the IT landscape. There exists a variety of intrusion detection & prevention systems
that are capable of monitoring the network or the host systems themselves [28, 17, 21]. To actively
prevent ICS compromise during an attack, these systems can e.g. stop communication between the
attacker and the ICS, or stop execution of the software under attack. However, this requires software
integration in the monitored ICS, which is not always a feasible option for existing legacy systems, and
comes with other drawbacks such as influencing the characteristics of the system being monitored.

Even if these solutions are available and effective in preventing compromised software from run-
ning, uncompromised software may still be made to misbehave. Bugs in the software or compromise
of the underlying system can allow an attacker to circumvent prevention mechanisms. Detecting this
situation is an important part of any system intended to defend ICSs against attackers. In this paper,
we will focus on this detection, rather than prevention. Specifically, we attempt to detect changes in
the behaviour of software.

Detecting the anomalous behaviour that compromised software exhibits becomes harder when the
system running that software behaves unpredictably to begin with. This is often the case for systems
with a lot of human interaction. However, ICSs are inherently more stable and predictable, making
our task easier. Nonetheless, detecting software compromise on ICSs is not straightforward.
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Proposed methods for detecting software compromise often rely on non-existent hardware support,
instruction set modifications, operating system modifications, etc. [6, 34, 33] These are all unavailable
for the huge number and wide range of control systems currently deployed in the world’s heavy
industry and critical infrastructure. Symbiotes, proposed by Cui and Stolfo[11], try to remedy this
by offering a general solution that allows retrofitting defensive software in existing firmware images.
The exact functionality of the original firmware does not need to be known for this, which means the
technique can be applied to a wide range of embedded systems. However, it does require changing the
original manufacturer-provided firmware image, and might therefore not be an acceptable solution
for many operators of ICSs.

Detection systems running on the ICS itself may not be able to detect all targeted attacks. For
instance, Abbasi and Hashemi have shown that it is possible to circumvent existing host-based intru-
sion detection with an attack that reconfigures a Programmable Logic Controller’s (PLC) processor
pin configuration on-the-fly [1]. Another attack that may not be detected is the complete replacement
of a device’s firmware [10, 3, 23], since the detection system is part of that. Indeed, the threat model
of Symbiotes explicitly excludes the replacement of the entire firmware image [11].

Our Contribution. In this work, we propose an alternative approach to detecting software com-
promise which uses side-channel measurements of the underlying hardware. Side-channel analysis is a
common technique in security evaluations, since it can be used to distinguish system behaviour that
differs slightly based on some secret information such as a cryptographic key. We posit that similarly,
it is possible to use side-channels to verify that software is still behaving as intended, based on some
baseline of behaviour. Our approach using side-channels has the advantage that there is no need for
monitoring support in the device firmware, and, by extension, that it will continue to function if the
device is compromised. Our contributions are as follows:

1. We verify the applicability of a side-channel-based intrusion detection system (IDS) in a real-
world scenario, using measurements of the electromagnetic (EM) emissions from the processor on
a Siemens Simatic S7-317 Programmable Logic Controller (PLC).

2. We describe in detail how to deploy such an IDS, highlighting its modus operandi, the adversarial
model considered and the necessary modifications to the existing ICS hardware.

3. We suggest a two-layer intrusion detection strategy that can effectively detect the illegitimate
behaviour of a user program (part of the software running on a PLC), even when only minor
malicious alterations have been performed. We describe the statistical models that profile the
user program and demonstrate how side-channel emission templating is directly applicable in the
IDS context.

Related Work. Side-channel-based techniques are becoming an increasingly popular tool to verify
software, as suggested by Msgna et al. [20] and Yoon et al. [32]. Similarly, Liu et al. [18] managed
to perform code execution tracking and detect malicious injections via the power side-channel and
a hidden Markov model. In a hardware-oriented scenario, Dupuis et al. [12] have used side-channel
approaches in order to detect malicious alterations of integrated circuits, such as hardware trojan
horses. In the field of reverse engineering, work by Goldack [15], Eisenbarth et al. [13], Quisquater
et al. [25] and Vermoen et al. [31] has shown the feasibility of using power traces to reverse-engineer
software, reaching instruction-level granularity. More recently, Strobel et al. have shown that EM
emissions can similarly be used for reverse engineering purposes [30].

Previous works attempt detection at various levels of granularity ranging from recognizing single
instructions to detecting larger blocks. In our work, we demonstrate that using EM emissions as a
mechanism to detect software compromise is possible without mapping the observed measurements
to specific instructions, or indeed even knowing the instruction set of the chip being monitored. Our
analysis is carried out on a processor that is part of a larger PLC, deployed in many systems around
the world. In particular, we do not control the clock speed, cannot program the processor directly
with its low-level instruction set, and cannot predict its behaviour with regards to EM emissions
beforehand.

2 Software Behaviour Verification on Programmable Logic Controllers

In section 2.1, we briefly describe the general architecture of PLCs, and explain why they are par-
ticularly suited for the approach we propose. Next, we introduce the EM side-channel in section 2.2.



Fig. 1. EM radiation captured from a running Siemens S7-317 PLC

Then, in sections 2.3 and 2.4, we describe our attacker model and propose a two-layer IDS strategy
that employs the EM leakage to perform behavioural verification. We also describe the required PLC
modifications to apply the IDS to legacy systems. Finally, in section 2.5 we highlight the operation
of our system.

2.1 Programmable Logic Controllers

A Programmable Logic Controller (PLC) is an industrial computer designed for highly reliable real-
time measurement and control of industrial processes. PLCs are designed to be easy to program,
and in their most basic function simply emulate a logic network that reads inputs and drives outputs
based on the values of those inputs. The operator of a PLC creates a program, which we will call “user
program”, to perform this control. A modern PLC runs some version of a real-time operating system
(OS), which provides functionality such as network connectivity to other machines, communication
bus control, reading inputs into memory, driving outputs from memory, and running the user program.
The latter three form the Read-Execute-Write (REW) cycle.

During the run of the user program, most low-priority tasks such as network communication
are postponed. This is to guarantee a maximum execution time on the program, offering real-time
guarantees to the operator. This means that in theory, the execution of a user program is not often
preempted by other code, and it should therefore be relatively easy to observe the behaviour of the
user program and determine whether it is, in fact, still behaving the way it should be.

Doing this observation from within the PLC itself is not trivial and requires extensive modifications
to their OS. Even though support of the PLC vendor is not always required for this [11], it is unclear
whether it would be wise to modify the OS on existing PLCs, because it introduces concerns such as
the possibility of breaking real-time guarantees.

2.2 EM Side-Channel Analysis

To enable us to still observe the user program in a less intrusive manner, we consider a concept used
in cryptanalysis to observe and break cryptographic implementations, namely side-channel leakage.
A side-channel can be thought of as a non-functional transmission of information about the state
of a system. E.g., the temperature of a processor is not a functional aspect of it, but its level of
activity can easily be derived from it4. Silicon chips emit electromagnetic (EM) radiation caused by
the electrical characteristics of the operations they perform. This radiation can be captured using
an EM-probe, basically a looped wire responding to changes in the EM field it resides in, connected
to a high-speed oscilloscope. Figure 1 shows a capture of EM radiation from the control chip of a
PLC, revealing when the OS, user program, and specific blocks of operations in the user program are
executed, and showing clear regularity.

Side-channel leakages are most commonly used in the analysis of cryptographic hardware such
as smart cards; a large body of research exists that shows how to extract cryptographic keys from
otherwise protected devices, using sophisticated EM techniques [24, 19, 16]. More interestingly, the
side-channel literature has established a wide spectrum of templating techniques, i.e. statistical models
that, once sufficiently trained, can help us distinguish between different states of a system [5, 8, 29].
Our work employs such templating techniques to provide intrusion detection capabilities.

4 TEMPEST is an NSA program dealing with spying on information systems through the use of these
side-channels.



2.3 Attacker model

Our system is intended to defend against an attacker who can upload new software to the PLC to
replace or modify the existing user program. The attacker does not control the PLC operating system.
Although this is not a very strong attacker model, it is a realistic one. Public analysis of Stuxnet has
revealed that it functioned by replacing the user program on the PLCs it targeted [14], which means
it falls within our attacker model. However, the more recently revealed Industroyer malware [7, 9]
does not modify software on a PLC, and therefore does not fall within our attacker model.

2.4 User Program Intrusion Detection System

We propose a two-layer intrusion detection system (IDS) that uses this EM side-channel to verify
that a PLC’s user program is still behaving the way it was programmed to behave. For this, it is
not necessary to know which exact operations a chip is performing; only that they are still the same
based on some baseline profile established in the past. The IDS would record this profile when the
PLC is first deployed, and it should be updated whenever legitimate code changes are performed.

To verify that the user program behaves as expected, the system uses the following two layers of
verification, alerting the operator as soon as one layer shows compromise.

1. The first layer checks user program runtime. If the user program deviates in runtime, this is a
clear indicator that it is not behaving as intended. If the runtime is deemed to be close enough
to potentially be legitimate, the system checks the second layer.

2. For the second layer, the user program’s EM trace is compared to a baseline profile that has been
crafted by templating the emitted side-channel leakage. If it matches sufficiently, the software is
behaving legitimately.

Extensive malicious alterations by an adversary unaware of this system are easy to detect via
layer 1. If an adversary is aware of the functioning of the system, or by coincidence happens to craft
a user program that runs in the same amount of time, they will be detected by layer 2.

Layer 1: Timing Side-Channel. Program runtime can be determined either by the PLC informing
the IDS when it hands over execution to the user program, and when it regains control (we call this
a trigger signal); or by analysing the EM waveform to spot when the control handover happens.

1. Trigger signals can be used by the monitoring oscilloscope to know when to capture the EM
waveform. The PLC’s operating system could send such a signal every time it hands over execution
to the user program, and drive the signal low again once it regains control. The advantage of this
is that the oscilloscope always captures the exact waveform that we are interested in, without
any need for the post-processing described in section 4.1. This does require a modification to the
PLC operating system, however, which may not always be possible. Obviously, the emission of
this signal should not be blockable from the user program logic, and so could also require the
addition of a hardware output that cannot be driven from the user program.

2. Waveform analysis uses the same EM side-channel as layer 2, described below, for matching the
user program: an oscilloscope can simply capture long runs of the complete EM waveform, both
OS and user program emissions. These waveforms can then be searched for some profiled parts
of the operating system known to be right before the start and right after the end of the user
program.

Layer 2: EM Side-Channel. It is not straightforward to distinguish user program compromise
from other deviations from the norm: there is the case where the controlled industrial process goes
outside of its target values, and needs to be corrected; or the case where a very infrequent but
legitimate action is taken, such as opening a breaker in a power distribution grid. At that point, the
user program’s behaviour will deviate from the norm, but we should not alert when it happens. This
shows that it is not sufficient to profile only the common case; the user program must be profiled
under each combination of inputs that leads to a different path through the program.

When the user program actually behaves differently than intended, either through misconfigu-
ration, bugs, or malicious intervention, these unintended deviations from the norm should all be
detected. This means our problem is to reliably distinguish between:



– when the user program is running in one of its usual paths;
– when the same user program is taking a legitimate, yet unusual path;
– when something other than a legitimate path is taken, or another user program is running.

Distinguishing between the first two cases is not strictly necessary for our IDS, but may be useful
for checking if the legitimate but unusual path is taken under the correct conditions. We split this
problem into four distinguishing cases:

1. Can we reliably distinguish user program A from user program B?
2. Can we reliably distinguish between different paths in the same user program?
3. Can we reliably distinguish paths in user program A from paths in user program B?
4. Can we reliably recognize whether a user program is user program A or not?

Question 4 is not strictly a distinguishing case. Instead, we need a threshold beyond which we no
longer accept a program as being program A. We determine this threshold experimentally using a
few programs with minor modifications. Different user programs might require a different threshold,
and determining such a threshold would be part of any profile building effort.

PLC modifications. Our system does require one modification to existing hardware: the processor
needs to be fitted with an EM sensor. Although this might imply that our technique is, in fact, not
applicable to existing legacy systems, we believe that this is a modification that can realistically be
performed on existing systems, without support from the vendor. The exact location of the sensor
depends on the location of the processor executing the user program; in general, the sensor would
be a loop situated right on top of the processor. Stable orientation of the sensor would require it to
either be fixed in place using e.g. hot glue, or use of a bracket mounted on the external housing of
the PLC, with the sensor inserted through ventilation grating.

2.5 Operation

There are two ways to use our IDS: first, constant operation, where the EM side-channel is constantly
monitored and checked for anomalies; and second, spot-checks, where an engineer manually attaches
monitoring equipment every so often which then checks whether the PLC is behaving satisfactory.
Considering the potential cost of the monitoring equipment, in particular the high-speed oscilloscopes,
spot-checks seem the more likely way to use our system.

A smart attacker could try to hide in the periods between spot-checks. However, consider that for
an attacker to hide their presence, they would need logic to determine whether a check is happening.
The execution of this logic is detectable by our IDS. The same is true for a dormant backdoor, since
it must contain logic to check whether it should start executing.

3 Experimental Setup

We experimentally verify the feasibility of our proposed system.
Our main experiment setup consists of a Siemens S7-317 PLC, modified to enable it to run outside

of its casing. We use a PCBGRIP [22] kit to hold both the main PLC board and the probe, so that
any disturbances do not move the probe relative to the chip under test.

3.1 Measurement setup

We measure EM radiation of the PLC’s main processor, an Infineon Tricore SAFTC11IA64D96E5,
using a Langer RF-R 50-1 10mm loop probe, which has a frequency range of 30MHz – 3GHz. The
probe is connected to a DC-powered Riscure amplifier with a frequency range of 100kHz – 2.5GHz,
with a gain of 25dB at 500MHz and noise figure of 2.4dB at 500MHz. Finally, the output of the
amplifier is passed through a 48MHz hardware low-pass filter. Our setup is situated in a normal office
environment, not in an EM-clean room. Capturing is done with a PicoScope 3207B set to a 100mV
range and 1GS/s capture rate at an 8-bit resolution.

5 No data sheet for this particular chip is available. However, data sheets for the TC11IB do exist, and the
period of manufacture for this chip indicates it may be related to the TC11IA.



Fig. 2. PLC with extruded mainboard and probe in place

3.2 Locating The User Program

Our PLC OS is not equipped to emit a trigger as described in section 2.4. When faced with this issue,
we first verified that the alternative of waveform matching works. However, we also concluded that
our analysis for layer 2 would be easier if we could indeed trigger the oscilloscope instead of searching
the entire waveform.

One solution we have tried to achieve this is waveform triggering. This uses the waveform matching
approach, but with a dedicated, relatively inexpensive low-speed oscilloscope that constantly scans
the waveform for a pattern and generates a trigger signal when it finds a match. Two devices that
implement this are Riscure’s icWaves [27] and KU Leuven’s waveform matching trigger [4]. We had
access to an icWaves, and we managed to produce a reliable and stable trigger signal based on the
transition from the operating system to the user program. One issue we encountered was that having
two oscilloscopes on the same signal line with a T-splitter causes artefacts in the measurements,
causing us to abandon this approach. We have not explored this further, but it could be remedied by
using a second probe.

We decided next on trying to emulate an OS trigger, by sending it from the user program. As
mentioned in section 2.1, the software on the PLC performs a read-execute-write-cycle. Since we are
not interested in analysing either the read or the write cycle, we can consider only part of the user
program as interesting, and treat other parts around it as though they were part of the OS. We
introduce empty operations around the interesting part, and after these empty operations we add a
toggle that toggles one of the output LEDs of an I/O simulator module. We have soldered a pin to the
back of this LED, and hook up a normal current measuring probe to the EXT port of the oscilloscope.
We now have a rising / falling edge trigger for the oscilloscope, and a clear demarcation of the part of
the user program intended for analysis. For real-world operation, such an invasive measure is clearly
not an option, but it does not detract from our analysis. The resulting trigger is not perfect, and
requires us to preprocess the measurements before analysis, as described in section 4.1.

3.3 Code Under Test

The Siemens S7-317 can be programmed in four different languages. Our analysis focuses on one of
these, SCL.

We initially attempted to make our analysis easier by eliminating branching in the user program
entirely, so that it would a single path through the program that would take a constant amount of time
and only deviate if different instructions were executed. However, this proved to be impossible: first,
because experimental results show that there are timing variations even when the same instructions
are executed on the same inputs; and second, because even simple programs like the one in listing 1.1
have multiple paths through the program depending on their inputs.

The legitimate user program we want to recognize is given in listing 1.1. We will refer to this
as program A, or PrA. It is a very simple representation of a control system used to keep a water
level between two acceptable values, e.g. in a canal. Based on whether the water level, simulated
as a 4-bit input, is too low, too high, or in-between, three different simulated outputs are driven.
These outputs could also be outputs to water pumps, warning lights, etc. Lines 1 and 2 read the



Listing 1.1. Program A
1 #water_low := "DIGITAL_IN_CHAR" < CHAR#5;
2 #water_high := "DIGITAL_IN_CHAR" > CHAR#10;
3 #water_good := NOT (#water_low XOR #water_high);
4 "WATER_ADD_PUMP" := #water_low;
5 "WATER_OK" := #water_good;
6 "WATER_REMOVE_PUMP" := #water_high;

Listing 1.2. Changes in Program B
1 #water_low := "DIGITAL_IN_CHAR" > CHAR#5;

Listing 1.3. Changes in Program C
2 #water_high := "DIGITAL_IN_CHAR" > CHAR#12;

water level input byte, compare it to the acceptable levels, and set internal variables to indicate high
or low water. Next, line 3 uses these internal variables to determine whether this is or is not an
acceptable water level. This could obviously be done with a different construction; the current logic
of inverting the XOR of the existing variables is a result of the aforementioned attempt to achieve
constant-time operation. We have kept it since it lowers the number of comparisons and introduces
additional operations (NOT and XOR). Finally, on lines 4–6, the three outputs are driven.

Next, we define two programs, PrB and PrC, that we want to distinguish from PrA. These simulate
slight changes that an adversary might make to the program to influence its execution without influ-
encing its runtime, thereby evading layer 1 of our IDS. The changes are shown in listings 1.2 and 1.3.
We have tested our method with other programs with only minor changes, and the performance is
similar. The changes are:

– In PrB, the attacker flips the logic of the water low variable, so that the system indicates low
water when in fact, it is okay, or even high, and indicates okay when the water level is low. This
simulates the attack where an attacker changes an instruction in the program code.

– In PrC, the attacker changes the constant in the comparison for water high to 12, so that the
system potentially overflows without ever indicating anything other than an okay water level.
This simulates the attack where an attacker changes only a comparison constant in the program
code.

4 Intrusion Detection Results

We have described how an adversary can alter the code with minimal impact on the program timing
in section 3.3. Since this evades layer 1 of our IDS, in the next sections we will discusses the techniques
applied for layer 2. We explain the steps we took to prepare the captured dataset for analysis, the
different analysis techniques used, and the accuracy we achieved with these techniques.

4.1 Template Construction

The dataset captured from the Siemens S7-317 contains small interrupts, variability in instruction
execution time and clock jitter. These all cause trace misalignment. To correct for this, we align the
traces at the beginning of the user program and filter out those traces where the user program has
been severely altered by interrupts. This filters out roughly 10% of traces. As mentioned in section 3.2,
for the purpose of our analysis we can treat the start and end of the user program as though they
are part of the OS. We ensure that these parts are areas of low EM emissions, and use a peak finding
algorithm to align on the first high peak after a valley: the part of the user program being analysed.

We build profiles, or templates, for user programs in several different ways, using progressively
more complex and more informative statistical models. Our aim is to test the accuracy of such models
in the intrusion detection context and identify the best model for layer 2. For every chosen model we
answer questions 1–4 posed in section 2.4, and show their performance for question 4, the recognition
problem, via the Receiver Operator Characteristic (ROC), False Accept Rate / False Reject Rate
(FAR/FRR), and Kernel Density Estimation curves6.

6 The ROC curve shows how, as the rate of genuine accepts (GAR) increases, the rate of false accepts (FAR)
increases as well. An ideal system has a 100% GAR with a 0% FAR, and a perfect ROC curve looks like the
one in figure 6. The FAR/FRR curve shows the balance between the two error counts, and the intersection
in the graph denotes the Equal Error Rate (EER): it indicates the threshold where the FAR is equal to the
FRR, and is a good indication of the accuracy of the system. An EER of 50% is bad performance, an EER
of 0% is perfect. For illustration purposes, we also include the kernel density estimation plots of the scores
for the genuine user program and the manipulated user program. The more overlap these kernels have, the
harder it is to recognize one as genuine and the other as compromised.



Fig. 3. SAD results for a combined average trace of PrA compared to PrB

Fig. 4. XCORR results for a combined average trace of PrA compared to PrB

We commence our analysis creating templates based on average and median traces, i.e. we partition
our experimental data in training and test sets and compute the mean and median trace vectors using
the training set. Template matching with the test sets is performed using Sum of Absolute Differences
(SAD) and cross-correlation (XCORR) as distinguishing metrics.

Continuing, we also construct full side-channel templates [5]. We assume that the EM leakage L
can be described by a multivariate normal distribution, i.e. L ∼ N (m,Σ) with mean vector m and
covariance matrix Σ, that are estimated using the training set. Specifically, for every program PrI, I ∈
{A,B,C}, we estimate the parameters of the distribution (L| PrI ), and template matching is performed
using a maximum likelihood approach. The EM leakage L contains a large number of samples (in
the range of several thousands), requiring a high data complexity for the sufficient training of the
multivariate model. Thus, we rely on dimensionality reduction techniques such as linear discriminant
analysis (LDA) [2] in order to compress the traceset and select the most informative samples, often
referred to as Points of Interest (POIs).

4.2 Averages and Medians with SAD and XCORR

To answer question 1, “can we distinguish PrA from PrB, and PrA from PrC?”, we have built
an average of all paths taken for every input of the entire program for PrA, PrB, and PrC. For
distinguishing PrA and PrB, this works unexpectedly well; both Sum of Absolute Differences (SAD)
and cross-correlation (XCORR) manage to reach an 85% recognition rate, i.e. for both programs,
85% of their traces are correctly identified as belonging to that program. For distinguishing PrA and
PrC, however, PrA is only matched for 60% of its traces, and PrC is only matched for 50% of its
traces, with XCORR performing slightly worse than SAD.

For question 2, “can we distinguish between different paths in the same program?”, we have built
averages of every input for PrA. When only accepting a match if the exact input for each trace
is matched, both SAD and XCORR perform very badly, with a match rate lower than 20%. Since
multiple inputs lead to the same path, we change our analysis to accept a match if any of the inputs
for that path match a certain trace. This improves the accuracy significantly, with SAD reaching
93%, and XCORR reaching 87%.

For question 3, “can we distinguish paths in user PrA from paths in PrB”, this shows a combined
behaviour from questions 1 and 2: distinguishing rates increase as we accept paths, rather than specific
inputs; and distinguishing between PrA and PrB performs better than between PrA and PrC.

For question 4, “recognizing PrA”, SAD with an averaged trace for all inputs on PrA performs very
badly. Figure 3 shows the performance of this method when using it for the changed instruction in
PrB. Important to note is the overlap between the estimated kernels in the results. The dotted graph



Fig. 5. SAD results for a combined average trace of PrA compared to PrC

Fig. 6. Template results for PrA compared to PrB

is the set that should be rejected, the unbroken one is the set that should be accepted. The overlap
in SAD scores shows that this algorithm simply is not good enough to distinguish between variation
from changing instructions and variation inherent in a single program with multiple execution paths.
Using a combined median trace does not significantly change the performance of the SAD method.
However, XCORR does perform rather well for recognizing PrB as not being PrA on a combined
average traceset, as can be seen in figure 4. The equal error rate is 18%, significantly better than
the 48% that SAD achieves here. For the case of recognizing PrC as not being PrA, however, both
XCORR and SAD perform badly, achieving an EER of 50%. Figure 5 shows the graphs for SAD.

Thus, we conclude that SAD is useless for the recognition problem, and although XCORR can be
used to recognize instruction changes, it cannot be used to recognize comparison constant changes.

4.3 Multivariate Templates

The results of multivariate templating show significant improvements upon the simpler models. For
question 1, using LDA and only 10 POIs we get a perfect distinguishing rate between both PrA and
PrB, and PrA and PrC, when combining all the inputs in a single dataset to train on.

However, for question 2, when taking every input as a separate template, the performance de-
grades significantly. Using an increased amount of POIs, attack traces and the improved performance
formulas of Choudary et al. [8], the correct distinguishing rate for many inputs does not exceed 25%,
indicating the need for a more detailed training phase. If we combine the different inputs for the same
path into a single template, however, the distinguishing rate improves again.

For question 3, we see that distinguishing between paths for the same program functions well
if only a single path for each program is considered. When multiple paths for each program are
templated, the same effect we saw in question 2 degrades the results.

However, for an IDS, question 4 is the most important one, and multivariate templates do perform
very well for this. The best method we have found is to combine all the traces for a single program
into a single template, which relates to question 1. For recognizing PrA with the attack of PrB, the
changed instruction, we get a perfect acceptance and rejection rate, with a very broad margin to set
the threshold. This can be seen in figure 6. The broad margin indicates that changing an instruction
is easily detected by multivariate templating. However, recognizing PrA with the attack of PrC shows
that the scores when changing only a comparison constant are very close together. Still, where both
SAD and XCORR were unable to recognize PrA in the presence of PrC, full templates are able to
perform with a 13% equal error rate, as shown in figure 7.



Fig. 7. Template results for PrA compared to PrC

5 Discussion & Future Work

Our results indicate that our IDS is capable of detecting very minor program alterations through
the use of full templating of EM emissions. We stress that simple models such as sum of absolute
differences and cross-correlation are incapable of detecting the same alterations, so multivariate tech-
niques are a de facto requirement against detection-aware attackers. However, even with multivariate
templating, we note that the recognition threshold has a much narrower margin for the most subtle
attack of changing a comparison constant; as can be seen by comparing the distance between kernels
in the KDE plots of figures 6 and 7. Future work could expand to other classification techniques,
including unsupervised machine learning, to improve these recognition rates.

Our proposed IDS focuses on the user program, because it is rather stable and can be treated
as a grey box. We do have access to the source code, if not to the specific hardware designs and
machine code. The operating system, however, remains a black box to us, introducing interrupts, un-
predictability of network communications, etc. Thus, future work could look into profiling the normal
behaviour of these PLCs, including operating system operation, interrupts, and timing variations.
Similarly, more complex user programs could be considered. As the numbers of possible inputs and
control flows increase, potential program behaviours become prohibitively numerous. For more com-
plex user programs, then, our technique could be applied to smaller units, like functions, with another
method to verify that these are executing in an expected order.

Our analysis is performed on programs written in SCL. However, as mentioned in section 3.3, the
Siemens S7-317 can also be programmed in three other languages. These three languages provide the
same functionality to the programmer, and all three are converted into STL before being uploaded to
the device. STL, short for Statement List, is Siemens’ implementation of the IEC 61131-3 language
Instruction List, a low-level language resembling assembly. However, when executing user programs
based on STL on the PLC, a just-in-time (JIT) compilation seems to occur. The first execution
of an STL-block in a user program run produces a longer and different waveform from subsequent
executions in the same user program run. Future work can look into dealing with this JIT compilation
and STL.

We stress that the actual deployment of our side-channel IDS is not trivial. The main hindrance
is template transferability [26], i.e. the fact that we can only train our statistical models on a limited
amount of devices, yet the model needs to be representative of a larger population of devices. Even
devices of the exact same model exhibit electrical variations due to ageing and different manufacturing
techniques, thus limiting the effectiveness of our detection process. On top of that, PLCs are often
deployed in environments rich in EM-noise, which may negatively impact our analysis. We did not
have access to such an environment, but it should be noted that our setup was in an office building,
not an EM-clean room. Also, the particular sensor we used seemed more sensitive to noise coming
from the chip than from the environment.

Another important consideration for deployment is whether the system being tested can be dis-
connected from its controlled process for the duration of the test. Since the user program behaviour
should depend on its inputs, this way the operator can verify all expected paths are still present. The
concern here is that a potential attacker may simply remove the fail-safe code path, but leave the
conditional check on whether it should be taken in place. Since no additional code is executed, nor
any code normally executed is removed, the behaviour of the program stays the same. Unfortunately,
for most applications of PLCs, it is not feasible to stop the industrial process being controlled or
disconnect the PLC, to check for this attack.



The final hindrance we wish to highlight here is cost: fitting a large amount of legacy systems
with EM probes would require a significant investment of engineering time and money.

These issues combined may make it infeasible to deploy our system for anything but the most
critical systems. Future work can aim towards effective deployment of high-accuracy side-channel
IDSs, and analyse the effect of environmental noise in detail.

6 Conclusion

In our work, we have shown that through time- and EM-monitoring techniques it is possible to dis-
tinguish between user programs on programmable logic controllers. This severely limits attackers and
forces them to apply more advanced techniques than naively replacing the user program. In addition,
we have demonstrated that even a detection-aware adversary making very small modifications to an
existing user program can be effectively detected through the use of full templating of EM emissions.
We have proposed an IDS for industrial control systems based on these techniques, and demonstrated
its feasibility for systems where only limited knowledge of the platform and exact software instructions
running on it is required.

To the best of our knowledge, we are the first to propose and demonstrate the possibility of using
the EM side-channel for this type of IDS on industrial control systems.

All software created in the course of this research is made freely available to the extent possible
under applicable law at https://polvanaubel.com/research/em-ics/code/.
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