
Practical Evaluation of Protected Residue
Number System Scalar Multiplication

Louiza Papachristodoulou1, Apostolos P. Fournaris2, Kostas
Papagiannopoulos1 and Lejla Batina1∗

1 Digital Security Group, Radboud University Nijmegen, The Netherlands,
louiza@cryptologio.org,kostaspap88@gmail.com,lejla@cs.ru.nl

2 Electrical and Computer Engineering Dpt., University of Patras, Greece,
apofour@ece.upatras.gr

Abstract.
The Residue Number System (RNS) arithmetic is gaining grounds in public key
cryptography, because it offers fast, efficient and secure implementations over large
prime fields or rings of integers. In this paper, we propose a generic, thorough and
analytic evaluation approach for protected scalar multiplication implementations with
RNS and traditional Side Channel Attack (SCA) countermeasures in an effort to assess
the SCA resistance of RNS. This paper constitutes the first robust evaluation of RNS
software for Elliptic Curve Cryptography against electromagnetic (EM) side-channel
attacks. Four different countermeasures, namely scalar and point randomization,
random base permutations and random moduli operation sequence, are implemented
and evaluated using the Test Vector Leakage Assessment (TVLA) and template
attacks. More specifically, variations of RNS-based Montgomery Powering Ladder
scalar multiplication algorithms are evaluated on an ARM Cortex A8 processor using
an EM probe for acquisition of the traces. We show experimentally and theoretically
that new bounds should be put forward when TVLA evaluations on public key
algorithms are performed. On the security of RNS, our data and location dependent
template attacks show that even protected implementations are vulnerable to these
attacks. A combination of RNS-based countermeasures is the best way to protect
against side-channel leakage.
Keywords: SCA evaluation · TVLA · residue number system · elliptic curve cryptog-
raphy · scalar multiplication · template attacks

1 Introduction
The security of embedded devices, even devices with dedicated cryptographic processors, is
dependent on resilience against side-channel attacks (SCA). Power consumption [KJJ99],
electromagnetic emanations [AARR03] and other forms of side channel information leakage
can expose the sensitive data of an implementation (usually a cryptographic key), through
the use of various types of SCAs, such as Simple Power Analysis (SPA), Differential Power
Analysis (DPA) and Template attacks [CRR03,MO09]. There are other powerful attack
techniques that require active scenarios, like Fault Attacks (FA), where injecting a fault
during the cryptographic operation can be used to extract the key according to the output
of the algorithm [BDL97].

∗This work was supported in part by the Technology Foundation STW (Project 12624-SIDES and Project
13499 TYPHOON) from the Dutch government and by the European ICT COST Actions TRUDEVICE
IC1204 and CRYPTACUS IC1403. A.P. Fournaris’ research work was also funded by CIPSEC EU Horizon
2020 project under G.A. No 700378.

Licensed under Creative Commons License CC-BY 4.0.
IACR Transactions on Cryptographic Hardware and Embedded Systems ISSN 2569-2925,
Vol. 2019, No. 1, pp. 259–282
DOI:10.13154/tches.v2019.i1.259-282

mailto:louiza@cryptologio.org, kostaspap88@gmail.com, lejla@cs.ru.nl
mailto:apofour@ece.upatras.gr
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.13154/tches.v2019.i1.259-282

260 Practical Evaluation of Protected RNS SM

A broad range of countermeasures to protect cryptographic operations that use secret
data have been devised, including randomization of the order of operations or masking
sensitive values. In Elliptic Curve Cryptography (ECC) traditional countermeasures
are focused on randomizing the scalar, randomizing the input point or manipulating
the EC parameters and point representation (e.g. randomized projective coordinates
approach) [FV12a]. However, several research groups explore alternative SCA resistance
approaches that are focused on non-traditional arithmetic systems like the Residue Number
System (RNS).

RNS was originally devised for parallel processing of arithmetic operations, in order
to increase computation speed. Since it can effectively represent elements of cyclic
groups or finite fields there is merit in adopting it in elliptic curve underlined finite field
operations. Efficient RNS hardware implementations of Montgomery multiplication for
elliptic curves [BDM06] and RSA [CNPQ04] showed the potentials of using RNS for
public key applications. RNS has been recently used for other cryptographic schemes
like lattice-based cryptography [BEHZ16] or in the work of Halevi et al. [HPS18], in
order to optimize the implementation of the Fan-Vercauteren variant of the scale-invariant
homomorphic encryption scheme of Brakerski [FV12b]. Since, this number system can
have such a broad applicability to cryptographic operations, using it for SCA resistance
seems to be inevitable. However, an extensive practical evaluation of RNS as an SCA
countermeasure is still not performed.

Related work: The potentials of RNS as an SCA countermeasure is observed in
several research papers, for instance Bajard et al. in [BILT04,BEG13], Guillermin [Gui11],
Fournaris et al. [FKSK15,FPBS16], Schinianakis et al. [SS13]. RNS parallel processing of
finite field operations apart from speed offers also different representation of the elliptic
curve points, which may reduce SCA leakage. Also, taking into account that a single bit
fault in an RNS number’s moduli can lead to "difficult to trace" changes in an overall finite
field element, supports the argument that the RNS can be introduced as SCA and FA
combined countermeasure. It has also been observed that the periodic change using base
permutation during the modular exponentiation (and consecutively scalar multiplication)
computation flow can introduce enough randomness to thwart SCAs. This approach led
to the introduction of the leak resistant arithmetic (LRA) technique [BILT04]. LRA has
been applied to modular exponentiation designs in two ways, either by choosing a new
base permutation once at the beginning of each modular exponentiation or by choosing a
permutation once in each modular multiplication during exponentiation [FPBS16].

Theoretical evaluations for secure RNS scalar multiplication are presented in [FPS17,
CATB18]. Both papers discuss the resistance of RNS randomization against various
SCA attacks. In [FPS17] traces were collected for an initial analysis, but due to the
constrains of the target platform, no proper evaluation was made. The SCA analysis
of [FPS17] implementation is limited to identifying the rounds of RNS with and without
the countermeasures. They imply that an Online Template type of attack (OTA) [BCP+14]
should not be possible in their protected implementation, but detailed SCA results are
missing. In [CATB18] Monte Carlo simulations are used to verify the resistance of the
countermeasure against several attacks, but no practical t-tests are made. To the best
of our knowledge, the only practical evaluation of an RNS hardware implementation is
presented by Perin et al. [PITM13] but is constrained to an RSA design and is focused on
comparative horizontal attacks (doubling/relative doubling attacks) and signal to noise
measurement estimations for SCA resistance. The above highlight the need for a practical,
broad and generic evaluation approach of scalar multiplication implementations that rely on
RNS arithmetic. Such an approach and overall assessment could provide a definite answer
on if and how RNS based technique (LRA and/or random moduli operation sequence) can
contribute to the design of SCA resistant scalar multiplication. Such an answer should be
based not only on theoretical analysis but, most importantly, on actual measurements.

L. Papachristodoulou, A. P. Fournaris, K. Papagiannopoulos and L. Batina 261

In an effort to formulate a generic and broad methodology for evaluating the security
of an RNS scalar multiplier we propose the use of Test Vector Leakage Assessment
(TVLA), initially proposed by Goodwill et al. [GJJR11]. This methodology consists of
several statistical tests between two trace sets of acquisition and uses Welch’s t-test to
evaluate if the two sets have significant statistical differences, that would distinguish for
example a fixed versus a random input. This test provides results simultaneously for all
the intermediate values and indicates potential points of leakage. Since its introduction
to public-key algorithms in 2011 [JRW11], a few research groups have used TVLA so
far for evaluation of RSA or ECC. Namely, Nascimento et al. [NLD15], Chmielewski et
al. [CMV+17] used it for evaluation of Curve25519 on Chipwhisperer and the complete
Weierstrass formulas on an FPGA respectively. Tunstall and Goodwill [TG16] give an
overview of cases and algorithms that can be applied during public key TVLA evaluations.
TVLA requires thousands or even millions of acquired traces to show the existence of
leakage. This fact, combined with the low operation speed and the large trace lengths
of public key implementations, make TVLA evaluations quite challenging for public-key
cryptography.

Contribution: As indicated in the above analysis, the emerging use of RNS systems
for cryptographic implementations and the broad belief that RNS offers a potential
SCA countermeasure makes practical evaluations of RNS implementations essential. The
complexity of RNS together with the fact that software implementations are generally slow,
make it challenging to apply common evaluation techniques on such systems. Considering
the above, in this paper, we propose a thorough, generic and broadly applicable practical
evaluation based on TVLA and template attacks for RNS based scalar multiplication. Our
primary goal is to examine and validate the RNS SCA capabilities using practical results.
Furthermore, our evaluation is performed on a SCA challenging target implementation, an
RNS software implementation using Montgomery Power Ladder (MPL) scalar multiplication
that includes both RNS and traditional SCA countermeasures. In this context, the
contributions of this paper are the following.

1. We provide a thorough SCA assessment of RNS scalar multiplication that involves a
series of statistical tests for a protected RNS implementation with a combination of
RNS and traditional countermeasures on a Cortex A8 platform. The RNS random
base permutation countermeasure based on the LRA technique is evaluated on its
SCA resistance in ECC implementations. This evaluation is extended to include an
RNS moduli operation sequence randomization countermeasure for enhancing the
SCA resistance. To the best of our knowledge, this work constitutes the first practical
evaluation of an RNS software implementation for ECC using TVLA in combination
with templates attacks, in order to enhance the confidence on the assessment results.

2. In the proposed evaluation approach, we verify and extend previous theoretical
results and simulations on the boundaries of the t-test threshold for the case of
traces with high number of samples that are obtained by a public key cryptographic
implementation. A generic methodology to provide those boundaries is proposed.

3. We introduce a complementary template attack methodology, in order to compromise
even protected RNS implementations. Our goal is to validate the TVLA results and
to expose additional vulnerabilities in the RNS designs. The introduced template
attacks are mounted on RNS LRA protected scalar multiplication and, indeed,
manage to retrieve the key using data and location dependent leakage. Location
dependent template attacks are introduced by Heyszl et al. [HMH+12] and used to
attack an ECC implementation on an FPGA. We use here location dependent leakage
templates for the first time in an RNS-ECC implementation setting.

Organization: The rest of the paper is organized as follows. In Section 2 the basics
of RNS arithmetic are highlighted and the RNS implementation that we evaluated is

262 Practical Evaluation of Protected RNS SM

presented. Section 3 presents the theory of TVLA with focus on challenges for public key
implementations. Hereby, we also propose the adaptation of the threshold for the t-test
according to the number of samples per trace. The template attacks are presented in
Section 4. Section 5 discusses the performance impact of various countermeasures. Finally,
Section 6 concludes the paper with a discussion over the potentials of RNS against SCA.

2 Residue Number System
2.1 RNS arithmetic for ECC
RNS is an extension of the Chinese Remainder Theorem and is a non-positional arithmetic
system where a number is represented by a set of individual n moduli xi (x

RNS→ X :
(x1, x2, ...xn)) of a given RNS basis B : (m1,m2, ...mn) as long as 0 ≤ x < M where
M =

∏n
i=1mi is the RNS dynamic range and all mi are pair-wise relatively prime. Each

xi can be derived from x by calculating xi = 〈x〉mi
= x mod mi. In contrast to binary

arithmetics, addition, subtraction and multiplication in RNS is performed within each
moduli (in n independent channels) thus enabling the parallelism of small bit length
operations to come up with an arithmetic result [BDK01] [FKSK15]. Since RNS is a
non-positional representation, comparisons, divisions and modular reductions are complex
operations, which are performed either by converting the number from RNS to binary
representation or by using base extension algorithms.

Binary reconstruction from RNS representation can be done either by using the Chinese
Remainder Theorem (CRT) or through a Mixed Radix System (MRS) transformation.
While the first approach seem to be more obvious, it requires a computational inefficient
finalmodulo M operation that can only be avoided by using and approximating a correction
factor (introducing the concept of Cox and Rower [KKSS00]). Using the MRS approach,
this correction factor can be avoided but RNS numbers need to be transformed into MRS
representation (a weighted moduli RNS variant) [BILT04] and then from this representation
to binary numbers. The MRS number X̃ can be obtained from X : (x1, x2, x3, ...xn) by
executing the Mixed Radix Conversion (MRC) algorithm [FPS17].

For elliptic curves defined over GF (p) (elliptic curves on GF (2k) are not discussed in this
paper), all GF (p) operations (addition, subtraction, multiplication) are modular operations.
RNS modular multiplication over GF (p) is the most computationally difficult operation.
It is usually realized through the RNS Montgomery multiplication algorithm that avoids
modular inversions, but includes base extension operations [BDK97,FPBS16,FPS17].

2.2 RNS Base Extension
Base extension (BE) is used when an RNS number represented in an RNS base Bn =
(m1,m2, . . . ,mn) needs to be represented in a different base B́n = (mn+1,mn+2, . . . ,m2n)
(gcd(mi,mj) = 1 for all i ∈ {1, n} and j ∈ {n+ 1, 2n}). Base extension can be realized in
various ways, but essentially, it consists of one step where the RNS number is transformed
to binary using base Bn and a second step where the binary number is transformed to RNS
using base B́n. As such, base extension is strongly related to the methods of transforming
an RNS number to binary. Two main approaches to base extension are used in practice for
RNS arithmetic: the MRS system and the Cox-Rower architecture introduced in [KKSS00].

While Cox-Rower method favors parallelism, the MRS system is often used for RNS
Montgomery Multiplication base extension, because it offers benefits in terms of leakage
resistance and fault propagation as discussed in [FPS17,BILT04,BEG13]. In MRS base
extension, the base Bn RNS number is converted into a base Bn MRS number and then
the base Bn MRS number is converted into a base B́n RNS number. A similar two step
procedure is followed for base extension from B́n to Bn respectively. Most studies on

L. Papachristodoulou, A. P. Fournaris, K. Papagiannopoulos and L. Batina 263

optimal base moduli [ESJ+13,BKP09] agree that moduli of the form 2k ± ci, 2k − 2ti ± 1
or 2k, 2k − 1, 2k−1 − 1, 2k+1 − 1 (Mersenne numbers) for various i values provide good
performance results as well as n and k numbers that are also optimally determined. The
RNS bases Bn and B́n dynamic range must be close to p (4p < M). Recent results
from Bigou and Tisserand in [BT15] show how to perform RNS modular multiplication
with a single base bit width instead of a double one, which results in two times faster
implementation for the same area, but in this case the Leakage Resistant Arithmetic (LRA)
approach followed in this paper cannot be used.

2.3 Using RNS for SCA resistance
In 2004, Bajard et al. in [BILT04] proposed, originally for modular exponentiation,
a γ random permutation of the base Bn and B́n moduli thus creating

(2n
n
)

random
permutations of Bn and B́n (i.e. creating Bn,γ and ´Bn,γ for each such permutation). This
approach leads to the LRA technique [BILT04] that theoretically can introduce enough
randomness to thwart SCAs. Initial attempts to introduce LRA in scalar multiplication
have been made in [Gui11] [Gui10], however, they are applicable only to the CRT type
BE when pseudo-Mersenne numbers are used for base moduli. As suggested in [FPS17],
when a permutation transition is done only once per scalar multiplication the vulnerability
to horizontal SCA attacks is not eliminated, while when it is performed in every point
operation of every round unacceptable performance overhead is introduced. So the most
promising balance between performance and SCA resistance is to employ LRA once
per scalar multiplication round [FPS17]. Apart from LRA, when performing modular
operations in each individual channel i sequentially (during an RNS calculation), an
additional SCA countermeasure can be devised by randomizing the sequence (order) of
these modular operations. Considering the high number of RNS operations during a scalar
multiplication, this sequence randomization can have a significant impact on information
hiding.

2.4 RNS Scalar Multiplication Implementations
Considering that LRA can be a strong randomization tool in an SCA resistant scalar
multiplication algorithm, capable of thwarting simple and differential, horizontal and
vertical, SCAs, in this paper we adopt a MPL algorithm for scalar multiplication that is
proposed and analyzed in [FPBS16,FPS17]. This algorithm realizes LRA as a random
RNS Base permutation once per scalar multiplication round and it is combined with more
traditional techniques like base point randomization, in order to provide resistance to a
broader range of SCA.

In this paper, we extend the approach followed in [FPS17], implement several RNS
scalar multiplication algorithms (with various countermeasures) and provide experimental
results on the SCA resistance of the LRA technique when used autonomously, with
RNS random operation sequence or in combination with traditional SCA techniques. To
achieve that, using the MPL algorithm publicly available in [Fou] as a starting point, we
implemented four different scalar multiplier variants in C software code for embedded
system devices using the GMP 6.1.0 library. The GMP library was chosen for its usability
and speed on calculating big-number values during scalar multiplication. Versions of
GMP newer than the 6.0.0 release have side-channel resistant functions, such as silent
modular operations without branching and constant time. Nevertheless, use of GMP during
scalar multiplication is limited to basic RNS GF (p) building blocks (modulo addition,
subtraction) that are not directly related to sensitive information. We implemented our
own big-number RNS-based Montgomery modular multiplication that is constant time. We
also used the random generation function of GMP mpz_urandomb(), which is a common

264 Practical Evaluation of Protected RNS SM

software random generator. Therefore, we do not expect that this choice of library will
affect the evaluation of our countermeasures in terms of side-channel leakage.

The first variant implements the original MPL algorithm [JY03] in RNS with no further
countermeasures. The second variant implements an MPL optimization with base point
randomization [Fou17, FV06], that is resistant against horizontal SCAs. This second
variant takes advantage of the intrinsic mathematical coherence between each MPL round’s
points [Gir06], in order to structure a fault detection mechanism for first and second order
fault attacks [FPS17]. Based on this property, We can evaluate if the round number i as
well as the scalar e is not modified using Cyclic Redundancy Check (CRC) error detection
codes.

To evaluate the LRA information leakage, we infused the MPL algorithm with the
LRA technique in order to structure another two scalar multiplier variants. The third
implementation consists of the original MPL algorithm with one random base permutation
conversion per scalar multiplication round. The fourth scalar multiplication variant offers
base point randomization and the LRA technique. We present the algorithms behind the
second and fourth scalar multiplier implementations (Alg.1 and Alg.2 respectively). As it
can be seen there is a need of transformation to Montgomery format and a Random Base
permutation (RBP) conversion for various points in the algorithm. According to [BILT04],
RBP can be done by performing two consecutive RNS Montgomery multiplications per
point coordinate that use the old and new permutations’ bases Bn and B́n in reverse order.
All four variants of scalar multiplication can use a fixed or a randomized scalar as input
and are implemented with and without RNS random moduli operation sequence.

Alg. 1. Blinded SCA-FA MPL [Fou17]
In: V , R ∈ E(GF (p)), e = (et−1, et−2, ...e0)
Out: e · V or random value (in case of faults)

1. Choose base Bn and B́n (permutation γt).
Transform V, R to RNS format using perm.γt

2. R0 = R, R1 = R + V , R2 = −R in perm. γt

3. Convert R0,R1,R2 to Montgomery format
4. For i = t− 1 to 0

(a) R2 = 2R2, performed in permutation γt

(b) if ei = 1
R0 = R0 + R1 and R1 = 2R1 in perm. γt

else
R1 = R0 + R1 and R0 = 2R0 in perm. γt

end if
6. If (i, e not modified (using CRC checks) and
R0 + V = R1)

then
(a) return R0 + R2 in perm. γt

else return (random value)

Alg. 2. LRA SCA-FA Blinded MPL [Fou]
In: V , R ∈ E(GF (p)), e = (et−1, et−2, ...e0)
Out: e · V or random value (in case of faults)
1. Choose random initial base permutation γt.
Transform V, R to RNS format using perm.γt

2. R0 = R, R1 = R + V , R2 = −R
3. Convert R0,R1,R2 to Montgomery format
4. For i = t− 1 to 0

(a) R2 = 2R2, performed in permutation γt

(b) choose a random base permutation γi

(c) RBP from γi+1 to γi for R0 and R1
(d) if ei = 1

R0 = R0 + R1 and R1 = 2R1 in perm. γi

else
R1 = R0 + R1 and R0 = 2R0 in perm. γi

end if
5. RBP from γt to γ0 for V
6. If (i, e not modified (using CRC checks) and
R0 + V = R1)

then
(a) RBP from γ0 to γt for R0
(b) return R0 + R2 in perm. γt

else return (random value)

In all four implementations, GF (p) operations are done in RNS. Performance optimiza-
tions are out of scope of this work. We aim to evaluate a straight-forward implementation
and any sort of optimization might influence our results, which is undesirable at this stage
of evaluation. As is typically implemented in literature and in order to avoid excessive
operations unrelated to the scalar multiplication, values related only to RNS Bases moduli
are precomputed and stored in memory for use in BE and random base permutation
algorithms. Following the approach of [ESJ+13] and [BKP09] a 4 moduli RNS bases
(n = 4) RNS realization was used in all four RNS implementations. For all the above
approaches, a GF (p) twisted Edwards EC was adopted with a = 1 and d = 2 where
p = 2192 − 264 − 1. Twisted Edwards Curves were chosen instead of Weierstrass ones
since the first have never been tested under the RNS arithmetic framework. However, the
twisted Edwards curve shape was used and not the equivalent Montgomery form that can
be combined with MPL, in order to keep the solution generic enough so as to be somewhat
usable for other EC types. To retain compatibility with NIST Curves and implementations

L. Papachristodoulou, A. P. Fournaris, K. Papagiannopoulos and L. Batina 265

of other similar works [ESJ+13], the prime field was left to be p = 2192− 264− 1 (although
the implementation can be easily adapted to any Edwards Curve including the popular
Curve 25519). The security of the chosen Edwards Curve does not alter the results of our
leakage study, since it relies on the employed countermeasures. We performed experiments
with the secure Edwards Curve (a=107, d=47, cofactor=4) as proposed in [BBJ+08] and
came up with similar results that are presented in subsection 3.6.

For 192-bit length GF (p), we employ RNS bases that have a 200 bit dynamic range
consisting of four approximately 50 bit moduli (k = 50) for each involved RNS base Bn
and B́n as suggested in [ESJ+13,FPS17,BKP09]. Since n = 4 there exist 70 different base
permutations. The security level provided by 70 different bases might not seem enough,
however this is a trade-off between memory cost and SCA resistance. Increasing the moduli
number would result in a big pre-computation table (currently 70×70 50-bit numbers) used
in every RNS base extension operation. Instead of increasing the number of moduli, we
propose combining LRA with the low overhead technique of randomizing the RNS moduli
operation sequence, offering 24 different combinations (for n = 4) for each RNS operation.
By randomizing the sequence of the moduli operations, we take advantage of the basic
RNS property of parallel computations, which offers a way of shuffling and enhances the
side-channel resistance of an RNS implementation as verified by our experiments. This will
enable us to create uniquely random computation patterns for each EC point operation
and each MPL round.

3 Practical Evaluation of RNS using TVLA
3.1 Theory of TVLA
TVLA is a leakage detection procedure, initially proposed by Cryptography Research
(CRI) [GJJR11] and used as a first step towards evaluation of the SCA resistance of device
under test. A generic univariate test is used to scan the traces obtained from the device,
which is evaluated as non-leaky if the tests at all points of every trace are below a certain
threshold. The statistical tests are chosen in a way that is independent of the leakage
model. More precisely, we test the case that there is no leakage (null hypothesis) versus
the case that there is leakage at a certain intermediate point LP . Let ntr be the number
of traces that the evaluator collects and ns the number of samples in each trace. Following
the notation of [ZDD+17], let L = {L1, . . . , Lns} be the measurement traces representing
the realization of our implementation with mean values L̄i. The null hypothesis for our
traces means that the expected value from our measurements is the same as the measured
value, if there is no leakage, i.e. L̄exp = L̄i ∀i ∈ {1, . . . , ns}.

Following the methodology of [GJJR11,TG16,NLD15,CMV+17], there should be two
sets of traces, A and B, with ntr/2 traces in each set; half of the traces are taken with
a fixed input and half with random input. If the null hypothesis holds, there should be
no differences in the t-test statistics measured from each trace set. The Welch’s t-test is
commonly used for TVLA evaluations. The test statistic value is:

si = L̄i,A − L̄i,B√
σ2
i,A

nA
+
σ2
i,B

nB

. (1)

For the Welch’s t-test, current TVLA evaluations use the critical value of 4.5 [GJJR11,
TG16,NLD15,CMV+17], which corresponds to a statistical significance level of a < 0.00001
for the univariate test. In [CMV+17] the authors observe some peaks above the threshold
for the protected implementation, which ended up to be ghost peaks. Their rationale is
that first they observed few of these peaks in the fixed versus random t-test. Then, they

266 Practical Evaluation of Protected RNS SM

took two trace sets with random values and applied the same test. The peaks observed
before did not appear again at the same spots, meaning that they were not dependent on
the input. [BGRV15].

However, in most previous works, the significance level of a < 0, 00001 does not consider
the total number of samples on the trace. As noted in [ZDD+17], the overall significance
level increases as the number of leakage points on the trace increases. Therefore, the
authors propose to adjust the significance level according to the number of points on
a trace. For long traces, meaning for more than 105samples per trace, the overall test
statistic value will be larger than ±4.5 and therefore a non-leaky device can not pass the
TVLA t-testing with the critical value of ±4.5. Hence, Balasch et al. [BGG+14] suggested
raising the critical value to ±5 for longer traces based on numerical experiments. For
longer traces, as the ones obtained from the implementation of public key algorithms, a
non-leaky device can not pass the t-test even with this higher value of ±5.

3.2 Proposed TVLA threshold for public key algorithms

One of the applications of Welch’s t-test is to test the location of one sequence of independent
and identically distributed random variables, as the ones obtained from SCA measurements.
In such a trace set, we are interested in s different null hypotheses, H1, . . . ,Hs, where
s is the number of samples in each trace, and we would like to check if all of them are
true. The probability of making one (or more) false discovery when performing multiple
hypotheses tests, the so-called family-wise error rate (FWER) or type I errors, is relevant
to the number of samples. The more samples we get per trace, the higher the FWER will
be. In order to calibrate the significance level, and consequently the threshold of the test,
when multiple sequences of variables are tested, the S̆idák correction should be applied.

The above mentioned calibration makes more sense in the case where we deal with
public key algorithms, where the number of samples per trace are in the order of millions.
The S̆idák correction as defined in [FHY07] is: aSID = 1 − (1 − a)(1/ns). This formula
appeared recently in the side-channel setting in [ZDD+17], where the authors identified
the need to correlate the significance level with the total number of univariate tests. More
precisely, they showed that for a trace set of 106 samples per trace, the probability that
the t-test will fail for the 4.5 threshold is 0.9987, reducing only to the half for a threshold
value of 5.

Taking all these into consideration we created a Matlab script which calculates the
threshold value based on the number of samples and the variance of each sample in a given
trace. We basically calculate the t-value according to the S̆idák correction; the larger the
number of traces obtained, the closer is the t-test value to the normal distribution’s value.
By using Alg.3 and 5M samples per trace, we obtain a threshold of ±6, which suggests
that the boundaries can be relaxed further. This result is generic and should be applied,
in order to define the threshold before any t-test evaluation starts. It makes more sense to
use this algorithm when public key cryptographic implementations are used or in any case
that the traces contain more than 1M samples, because of the false positives that would
appear with the threshold set to ±4.5

At this point, it is worth noticing that the above observation affects public key crypto-
graphic TVLA evaluations and gives a reasonable explanation for the results of previous
papers. For instance, Nascimento et al. [NLD15] with 400k samples and Chmielewski et
al. [CMV+17] with 32M samples for their t-tests observed some peaks above ±4.5, which
they discarded as false positives. Using 400k and 32M samples in our Matlab script gives
threshold values of ±6.7 and 7.3 respectively, which would evaluate their implementations
as secure with no false positives. Therefore, it is important to adjust the boundaries for
every set of traces.

L. Papachristodoulou, A. P. Fournaris, K. Papagiannopoulos and L. Batina 267

Alg. 3. T-test Threshold
In: number of traces for group A and B ntA, ntB, number of
samples ns, sampled standard deviation σA, σB
Out: threshold value for Welch’s t-distribution tht
1. Choose level of significance a. Here a = 0.00001.
2. Family-wise error rate fwer = 1− (1− a)ns

3. S̆idák correction sidaka = 1− (1− a)(1/ns)

4. df =
(σ2

A

ntA
+ σ2

B

ntB

)2
/...
((σ2

A

ntA

)2
/(ntA−1)+

((σ2
B

ntB

)2
/(ntB−1)

))
5. Threshold tht = tinv(1− sidaka/2, df)

3.3 Experimental setup
For the experiments we chose to load the implementation on a BeagleBone Black, which is
a typical processor for portable devices. Apart from being a widely used processor, its
high frequency of 1 GHz is necessary for our experiments, since a software implementation
of RNS requires a lot of computational power to operate. As an indication, a full scalar
multiplication for a 192-bit scalar takes 1,5 seconds when both SCA countermeasures are
activated. The experimental setup we used is the following:

• BeagleBone Black with Cortex A8 processor running at 1GHz.

• EMV Langer probe LF B-3, H Field 100kHz up to 50 MHz.

• Lecroy Waverunner 8404M-MS sampling at 2.5GS/sec.

We used the secure RNS scalar multiplication algorithm from the public repository [Fou]
modified with the appropriate functions to perform various types of t-tests and template
attacks. For the analysis of our traces we used Matlab R2016b and the Inspector 4.12
software for Side-Channel Attacks provided by Riscure [Ins].

3.4 Processing of traces and alignment technique
Misalignment of traces is a common obstacle in security evaluations. It is often due to
the noise of the target device or it is imposed on purpose as "jitter", in order to make
the target device more resistant to SCA. Having our implementation on the BeagleBone
Black, where other processes of the operating system are running at the same time, it
was expected to have some noise from the device. However, this is what makes a target
and a leakage assessment more realistic. With some common signal processing techniques,
such as the absolute value (ABS) operation, the window resampling and low pass filter,
we could get a clear signal and we were able to perform TVLA. The misalignment due
to random interrupts is handled by acquiring a big number of traces (in some cases we
reached 50k traces), and by throwing out the traces that had interrupts. These were not
many, mostly it was about 1/10 of the total number of traces.

The ABS operation, as its name suggests, results in traces where the absolute value
of each sample is depicted. The Inspector module of ABS computes the average value of
each sample and uses it as a reference offset value. The result for each trace si in a trace
set S is: Abs_offset(si) = |si − offset|.

Window resampling is a technique, where the samples of the acquired trace are resampled
in a window of a desired length, in order to "clear out" some noise from the trace and make
it shorter and easier to process. This technique offers a Signal-to-noise-ratio improvement
by averaging several samples that carry the same signal. A second advantage is performance
improvement. The compression of many samples into one, results in smaller traces which
can be processed faster. As with every resampling technique, it results in some loss of
information, which could possibly include leakage points and lower the leakage levels. This

268 Practical Evaluation of Protected RNS SM

loss of information is prevented in our experiments by using a 75% of overlap of samples,
at the cost of performance. After experimenting with different window values, 200 samples
per window with an overlap of 75% gave good results, with minimal information loss and
without affecting the leakage levels.

Figure 1: Applying FFT to find the dominant frequencies

A technique that we applied to get clear patterns for alignment is the Low Pass Filter,
which allows only certain frequencies to pass. From the Fast Fourier Transformation (FFT),
we found the dominant frequencies of our device during execution of the cryptographic
algorithms. As seen in Figure 1, the maximum energy segments are at 0− 300 MHz and a
high frequency appears also at 1 GHz, the running frequency of our processor. As seen in
Figure 2, applying a low-pass filter in a trace, would make patterns, as the selected one,
more clear in all the traces. We chose these repetitive patterns to perform alignment.

Figure 2: Applying low pass filter to find good alignment points

3.5 TVLA Analysis & Results
The leakage analysis for the RNS implementation was applied for the following four cases:

1. The unprotected version, where no countermeasures are incorporated apart from the
fact that a constant time MPL implementation is used (unprotected() function).

2. Scalar multiplication with randomized input point (rdm_point() function).

3. Scalar multiplication with random base permutations (LRA() function).

4. The fully protected version of scalar multiplication, where both point and base
permutation randomizations are applied (LRA_rdm_point() function).

We performed five sets of experiments. In the first experiment set, we performed t-tests
for fixed versus random scalar, when the countermeasure of scalar randomization is not
used. The scalar is usually the secret value of the protocols used in public key cryptography;
for instance during scalar multiplication or during signing, the aim is to hide the scalar,

L. Papachristodoulou, A. P. Fournaris, K. Papagiannopoulos and L. Batina 269

i.e. the private key, from an adversary. Therefore, it is interesting to test the correlation
of the implementation traces to random versus fixed scalar. In Section 3.5.1, we kept the
secret scalar unmasked. In a second set of experiments, we differentiated between random
and fixed input point. In Section 3.5.2, we present a series of t-tests for the four variations
of the RNS implementation, in order to evaluate the correlation of the implementation
leakage to a fixed or a random input point. Then, we implemented and tested scalar
randomization. In the experiment set of Section 3.5.3, the t-tests for fixed versus random
scalar show the correlation between the randomized scalar and the alternations between
random and fixed values of it. Section 3.6 shows the same set of experiments using random
versus fixed point and the implementation with unified formulas on the secure twisted
Edwards curve. Finally, in Section 3.7 we perform t-tests on the implementations with the
LRA technique and the RNS random moduli operation sequence technique.

All sets of experiments that we performed, followed the rationale presented initially
in [JRW11]. The acquired traces are compared with a constant scalar−constant input point
test vector, in order to reveal any systematic relationship between the power consumption
and the secret scalar or the input point respectively. The test fails if there is a single point
in time where the t-value for the chosen set exceeds +6 or −6, the new t-test boundaries
that we defined in subsection 3.2 due to the large trace length of RNS scalar multiplication
algorithm.

3.5.1 T-test random versus fixed scalar

At first we performed the t-test in raw traces, without any pre-processing and alignment.
Since we are interested in the leakage of the scalar, we performed the t-tests with fixed
versus random scalar1. At first, we observed that the levels of noise and misalignment were
so high, that even in the unprotected case, the leakage was not significant. This is depicted
in Figure 3, where we see that there is leakage in the beginning of the traces, related to
the processing of the scalar k. However these peaks disappear in the next rounds due to
misalignment. In Figure 4, we notice a peak at the point where we performed alignment.
Apart from the fact that window resampling offers a natural way of alignment, we also

Figure 3: Not aligned traces Figure 4: Alignment around
60000 samples

Figure 5: Alignment around
130000 samples

performed static alignment in the resampled traces following the procedure described
in 3.4. Aligning at interesting patterns rather than interesting points is useful in our case,
since we have a large number of points in all experiments, ranging from 105 to 8 · 105.2
High density of leakage peaks is observed at the places where alignment is applied. It is
noticeable that the leakage "moves" on the trace following the alignment points, as shown
in Figures 4−5.

1At this point, we assume that we are able to control the input of the secret scalar, but in later
experiments we have more realistic attack scenarios, where we can manipulate only the input points.

2When the number of samples is small, the method to find interesting points of Section 4.2 in [PITM13]
can be followed.

270 Practical Evaluation of Protected RNS SM

It is important to note at this point, that despite having two randomization counter-
measures switched on, there is leakage from the unprotected scalar. This fact, indicates
the necessity to apply scalar randomization for a secure implementation, even if it might
be a costly countermeasure. The following figures show the t-test results for all four cases
for aligned traces obtained by interchanging between random and fixed scalars. Figure 6
shows the leakage for the unprotected implementation where both countermeasures are
switched off. Figures 7− 8 show the leakage when there is only the randomization of
the input point or the random base permutation (LRA) respectively. In Figure 7 we can
identify the manipulation of the scalar in every round and the results are in accordance
with our expectations, as we have collected about 7 rounds of the implementation for the
rdm_point() case. An obvious observation is that the introduction of the LRA technique
effectively reduces leakage compared to Figure 8 t-test. Thus, it seems that the LRA tech-
nique is more effective as a countermeasure when compared to input point randomization.
Finally, Figure 9 shows the leakage of the implementation with combined countermeasures.
It is important to note here that the leakage of the scalar happens in the beginning of
the execution, where most probably the location of the scalar is accessed and the value of
the scalar retrieved, in order to get its most significant bits and start the bitwise scalar
multiplication. This leakage is expected, since no scalar randomization is implemented in
this case. It is also expected to see the leakage disappear after a few rounds, because the
other two countermeasures are taking place and they are able to hide the scalar as well.
What is not expected is that the combination of randomized base permutation (LRA) with
randomized input point increases leakage, especially in the first MPL rounds. This fact
might be platform specific and it seems to be possible to launch an attack during the first
two MPL rounds of this implementation.

Figure 6: unprotected() random vs fixed
scalar

Figure 7: rdm_point() random vs fixed
scalar

Figure 8: LRA() random vs fixed scalar Figure 9: LRA_rdm_point() random vs fixed
scalar

3.5.2 T-test random versus fixed input point

As a next set of experiments, we take a set of randomly interleaved acquisitions of fixed
versus random input point. The scalar is fixed and the countermeasures of randomized

L. Papachristodoulou, A. P. Fournaris, K. Papagiannopoulos and L. Batina 271

input point and/or random base permutations are applied as before. It is obvious for the
t-test illustrations that the leakage in this case is significantly smaller than in Section 3.5.1.
In Figure 10 we see that there is significant leakage in the first rounds that reduces later,
but this is only due to misalignment caused by the noise. When we set the trigger at a
later round, starting for instance at the 10th scalar bit, we got a similar picture, with many
leakage peaks in the beginning of the t-test. Figures 11−12 show that applying one of the
two proposed countermeasures is enough to reduce the leakage of the implementation only
around the aligned area, which might be enough to exploit the implementation, but due
to the limited number of leakage points it would be hard to perform a successful attack.
Finally, Figure 13 shows that our protected implementation passes the t-test as expected.

Figure 10: unprotected() random vs fixed
input point

Figure 11: rdm_point() random vs fixed in-
put point

Figure 12: LRA() random vs fixed input point Figure 13: LRA_rdm_point() random vs
fixed input point

3.5.3 T-test random versus fixed scalar for randomized scalar variation

The evaluation of a countermeasure with TVLA consists of distinguishing between random
and fixed values of a certain parameter. If this parameter is randomized and used as
countermeasure, then an adversary should not be able to distinguish between a random or
a fixed value of it. This is the case for this part of our experiments. T-tests for fixed versus
random scalar, when the scalar randomization countermeasure is applied, show that there
is no leakage in all four cases as it is expected. The same pre-processing steps of absolute
value, window resampling and alignment are applied as before. Figure 14 indicates the
t-test results for the scalar multiplication variant of MPL with RNS without input point
randomization and LRA, only the scalar randomization is applied. Since we perform 1st
order t-tests and we blind the secret scalar, our implementation passes the statistical tests.
Depending on the order of the masked value and the order of the t-test, it can happen
that higher order t-test will fail. For instance, if additive splitting of the scalar with more
than 2 shares is used, then the 1st order t-test should fail. For this work, we performed
only 1st order t-tests and we blind the scalar by adding to it a random multiple of the
order of the group. As indicated in all figures applying randomized scalar combined with
the other RNS countermeasures can give a secure implementation.

272 Practical Evaluation of Protected RNS SM

Figure 14: random vs fixed
scalarunprotected_scalar_rdm()

Figure 15: random vs fixed scalar
rdm_point_scalar_rdm()

Figure 16: random vs fixed scalar
scalar_rdm_LRA()

Figure 17: random vs fixed scalar
scalar_rdm_LRA_rdm_point()

3.6 Secure twisted Edwards curve and unified formulas
The TVLA results presented above are independent of the chosen curve and the applied
group law. The results of Sections 3.5.1- 3.5.3 are performed on the Edwards curve
a = 1, d = 2, which is not included in the list of secure curves according to [BCLN16]. The
tests of this section are performed on the secure twisted Edwards Curve (a = 102, d =
47) [BBJ+08] and the results are similar to the previous ones. We also replaced the dedicated
group law (which was chosen for efficiency reasons in the first series of experiments), with
the unified group law. The figures 18- 21 show the t-tests for the case of random versus
fixed input point.

As we see from these figures, the number of samples is of order 104, instead of 105 as it
was in previous experiments. Higher misalignment levels in the new traces compared to
previous ones, led us to perform the processing steps with different parameters. Apart from
that, the graphs are similar to that of Section 3.5.2, with much leakage for the unprotected
version, less leakage when one countermeasure is applied, and no leakage for the fully
protected version. In Figure 20, we see that applying only randomization of the point
cannot hide the correlation between random and fixed points, and this leakage is spread
throughout the trace, not only in the aligned area as before. This might be due to the fact
that we achieved better alignment in this set of traces, so the leakage is more obvious.

3.7 Secure twisted Edwards curve with randomized RNS operations
In this section, we examine the TVLA results of two RNS-specific countermeasures, namely
the LRA technique and the RNS random moduli operation sequence technique. We notice
that the leakage is significantly less compared to the results of the previous sections
for the case of LRA. This is due to the fact that extra randomization is added in the
implementation. Figure 22 shows the results for random versus fixed scalar, when the scalar
is unblinded. Leakage is observed as expected, but it is much less compared to figure8
from previous results. Figure 23 shows the results for random versus fixed scalar, when the

L. Papachristodoulou, A. P. Fournaris, K. Papagiannopoulos and L. Batina 273

Figure 18: unprotected_new_curve() rdm
vs fixed point

Figure 19: LRA_new_curve() rdm vs fixed
point

Figure 20: rdm_point_new_curve()rdm vs
fixed point

Figure 21: LRA_rdm_point_new_curve()
rdm vs fixed point

scalar is randomized. We notice only one peak around the 38000 sample, which is above
the threshold and can be considered a ghost peak, since it disappears when we perform
random vs random TVLA. Finally, Figure 24 shows the results for random versus fixed
point, when the point is random and shows clearly no leakage. This is an improvement
over previous results for LRA in Section 3.5.2. From the above results can be concluded
that the combination of the two RNS countermeasures lead to reduced leakage compared
to implementations with single countermeasures or LRA with base point randomization.

Figure 22: rdm vs fixed
scalar

Figure 23: rdm vs fixed
scalar

Figure 24: rdm vs fixed point

4 Template Attacks on RNS scalar multiplication
TVLA offers a generic framework for evaluating an implementation and the t-tests presented
in the previous section show the expected leakage of RNS with the combination of LRA and
traditional countermeasures. In this section, we perform template attacks in the different
variations of the implementation, in order to further examine the behavior of the RNS-LRA
and randomization or RNS operations techniques and to validate the fact that certain

274 Practical Evaluation of Protected RNS SM

countermeasures are necessary to prevent leakage of the implementation. The attacks
explore data dependent and location dependent leakage and give similar results for all
cases. When the randomized scalar or operations countermeasures are activated the results
are different as expected. As an evaluation metric for the leakage of the RNS algorithm
we used Perceived Information (PI) introduced to SCA by Renauld et al. [RSVC+11].
Compared to the mutual information metric, which assumes a hypothetical adversary who
can perfectly profile the leakage, PI uses actual estimation procedures and practical traces
to profile the Probability Density Function (PDF) of the implementation. More precisely,
following the steps to estimate the PI of the implementation of RNS on the BeagleBone,
as defined by Durvaux et al. in [DSVC14] we first collected profiling traces to estimate the
leakage model. Then, we collected a set of test traces to estimate PI corresponding to the
actual leakage of the chip. Finally, we evaluated the estimation errors and the assumption
errors from which the misclassification percentage can be calculated.

Estimation errors occur when the number of collected traces is too low to estimate the
model properly. In our approach, we avoid estimated errors by collecting 50k traces. After
alignment about 20k traces are left, for which the template classification results were not
so high. For 80% alignment threshold and the resulted 20k aligned traces, we get success
rates between 65−70%. These success rates are rather low, if we want to avoid assumption
errors. Assumption errors can occur when the template model may not be able to correctly
predict the distribution of samples, even after intensive profiling. When the alignment is
stricter and by using a group of 10 traces for detection of the correct group instead of a
single trace each time, then we can reach success rate of 99% as described later.

4.1 Data dependent leakage
Data dependent leakage is observed when the value of a secret variable can be monitored by
an adversary. This happens when the variable is unprotected. Leakage can also be observed
when that specific variable is protected, but at the observation time the variable is sent or
retrieved from a memory location in clear view. In our case, the unprotected scalar is used
during scalar multiplication in the variation of the unprotected RNS implementation and
the one with LRA countermeasure activated. The only case that behaves differently in
data dependent leakage is the variation that uses scalar randomization or LRA randomized
operations.

The key dependent assignment, the if-statement in Algorithm 1-step 4b (or Algorithm
2-step 4d), is the one that could be observed for this experiment. We created templates for
scalars s1 = 0x000001000· · · 000 and s2 = 0xFFF0· · · 00F. Since we wanted to observe
only one instruction, we collected 50k traces of 700 samples each. After alignment, we
kept around 3k-7k traces (more precisely 3385 traces for the unprotected case, 3132 traces
for the protected one, 7622 traces for LRA-rdm_operations), from which we used half to
create templates and the other half to test if the classification in the correct template group
is successful. Figure 25 shows the acquired traces from the protected (top) and unprotected
(bottom) implementations. The selected part from each trace is used for alignment for
both variations of the algorithm for 700 samples. For the training of the templates and
the classification we used only the aligned part for each group of traces, which is about
350 samples long as shown in Figure 26. The success rate of the unprotected algorithm
is 91,73% for group 1 corresponding to the current bit ei being 0, and 90,54% correctly
classified traces to group 2, corresponding to the current bit being 1. The corresponding
results for the LRA_rdm_point protected version is 97, 47% for ei = 0 and 82, 12% for
ei = 1. The results when one countermeasure is activated give similar percentages of
classification, above 90% of success rate. We did not perform the actual attack to recover
each key bit, we just show here with high classification results, that with template attacks
it is possible to distinguish bit 0 from bit 1.

Scalar randomization and randomized RNS operations seem to be an efficient counter-

L. Papachristodoulou, A. P. Fournaris, K. Papagiannopoulos and L. Batina 275

Figure 25: The selected part for alignment the protected and unprotected implementation

Figure 26: Aligned template traces for scalar assignment protected (top) and unprotected
(bottom) algorithms

measures against data dependent template attacks. We performed the same procedure as
with the previous sets of traces. More specifically, we collected 50k traces for all variations
of the implementation. Then we performed alignment, and trained templates from the
aligned part of the traces. We note here that we use only the selected part to train and
classify templates.

The initial results give a success rate of 65-72% for all four variations of scalar random-
ization, which are quite low to give us confidence for the classification results. This might
be a result of the bias of the GMP randomization function. We could not achieve higher
success rate for this amount of traces and it is possible that more traces would eliminate the
bias and give better results. However, since we perform the attack on the blinded scalar, it
is expected that the data dependent leakage is very low in this case and therefore, simple
classification techniques cannot separate the two sets as before. Clustering algorithms
from machine learning, as applied in [OPB16,PITM14] might give better results for the
scalar randomization version. Finally, we tried to classify the template traces for the
LRA_rdm_operations() function and we got 55 − 58% of correct classification, which
shows that by using this combination of RNS countermeasures randomizes the data enough
to make template attacks hard to succeed.

4.2 Location dependent leakage
In this subsection, we present location dependent template attacks. The templates are
created based on the storage structure that handles a key-dependent instruction, in our
case the doubling during scalar multiplication. As it is indicated in Algorithm 2 step 4(d),
during an MPL round an addition and a doubling of points on the curve happen every time
in the same order. The only thing that differs according to the current scalar bit is the
manipulated register. More specifically, when the current scalar bit is 1, then the content

276 Practical Evaluation of Protected RNS SM

of storage variable R1 is doubled, otherwise R0 is doubled. We exploit this vulnerability
and the fact that the implementation has no memory address randomization. By capturing
the doubling operation, we can successfully create and classify templates for R0 and R1.
In this way the scalar could be recovered bit-by-bit. This sort of memory access leakage is
exploited in [PITM14] for the case of RSA using RNS, where the authors used unsupervised
learning and clustering algorithms to classify their traces. We show here how to obtain
high classification results using template attacks for the case of ECC with RNS on our
software implementation.The template classification results for all four variations of scalar
multiplication vary between 87-99% and thus give a very high probability of a successfully
launched template attack. We calculated the two normal distributions for ei = 0 and ei = 1
for every variation of the implementation and they are indeed very different (N(−24.3, 9, 7)
and N(19.6, 6.1)). This is why the misclassification percentage is very low.

For the doubling operation, we collected 50k traces 3000 samples long. After alignment,
we used the remaining 14k traces for the location dependent attack. We use half of the
traces, i.e. 7k traces of 3000 samples, for training the templates, and the remaining 7k
traces for classification3. Figure 27 shows the raw traces and selected part for alignment
and Figure 28 shows the aligned traces for doubling in the case of the randomized scalar
implementation. As previously, we use the 451-samples-long area to train and classify
traces. The result of classification is correct with 99, 44% for group 1 and 99, 97% for group
2. For the case where randomization of the scalar is activated together with LRA, the
situation is similar and the success rate of correct classification of templates reaches 95%.
Only the case of LRA_rdm_operations shows lower classification levels of 70− 83% which
indicates that combining two RNS-specific countermeasures makes template attacks harder
to perform. Acquiring more traces, might give better results, but this might discourage
the attacker, since already for 50k traces we need 20 hours of acquisition time.

Figure 27: Selected area for alignment for protected and unprotected doubling

The registers mentioned in the algorithms are not really single registers that hold the
result of doubling. In RNS all values are stored in 50-bit chunks (in our case), so the result
of doubling is stored in 4 different memory locations. Therefore, the location dependent
leakage is not an expected result for an RNS implementation and especially with the LRA
countermeasure activated. We attribute the high success rate of this attack to the leakage
of the platform and the fact that those chunks of values are probably stored in capacitors
next to each other.

The fact that scalar randomization does not seem to be an efficient countermeasure
against localized templates is also worth extra justification. We believe that the bits of
the randomized scalar is what is correctly classified and can be recovered, not the initial,

3This number of traces may seem too low for an evaluation of a symmetric key implementation. For
instance, Unterstein et al. in [UHSS17] performed EM location dependent templates for the case of AES
S-Box and they used 1M traces for profiling. Acquiring 1M is unrealistic for public key evaluations, because
it is not possible for the analysis tools to process this amount of information. Therefore, we have to draw
our conclusions with the amount of traces that we can acquire.

L. Papachristodoulou, A. P. Fournaris, K. Papagiannopoulos and L. Batina 277

Figure 28: Zoom-in aligned traces for doubling operation with randomized scalar

unblinded scalar. Therefore, we can consider the location dependent template attack
unsuccessful in this case.

5 Performance impact of countermeasures
In this section, we discuss the performance impact of the various countermeasures we
implemented. At first, we note that performance optimizations were out of scope of our
work. Therefore, we did not apply SIMD instructions or parallel computations of RNS
operations. An unprotected implementation of RNS takes 0,726 sec. to perform a 192-bit
scalar multiplication.

As a reference point we take the unprotected version of RNS and we measure the
extra time needed as we add countermeasures. Applying point randomization costs more
than performing random base permutations, because of one extra point doubling that is
necessary. So we have 1,101 sec. for point randomization instead of 1,090 for the LRA
algorithm. When both countermeasures are applied, the scalar multiplication takes 1,525
sec., which is more than double compared to the unprotected version. Adding scalar
randomization to all the algorithms would add a 1 − 8% performance overhead (PO).
Adding unified formulas makes our algorithms 16− 30% slower. Using the LRA technique
with random RNS operations takes 1,278 sec. and adds 76% overhead, which is much
less than the combination of LRA and randomization of the point. At the same time,
this combination leaks less and make data dependent template attacks not possible. It is
therefore proposed as a better equivalent to tranditional SCA countermeasures.

Table 1 shows the performance evaluation and the attack possibilities for every algorithm
in terms of this work. The 7 sign shows that the corresponding algorithm does not pass
the t-test or it is not protected against template attacks, while the 3 sign shows a secure
algorithm according to TVLA or against templates. The − sign shows that we did not
perform this attack, because we can expect very similar results. The N/A indicates that
this type of attack is not applicable to the algorithm. The percentage numbers show the
PO compared to the unprotected RNS implementation.

The TVLA experiments for RNS-MPL shows that the proposed RNS-LRA algorithm
with combined countermeasures can indeed provide high levels of security compared to the
simple RNS implementation or an implementation with a single countermeasure. More
precisely, the systematic correlation between the power consumption and the input point
can be prevented by using the classical countermeasure of point randomization and by
randomizing the base point representation that is used in every round. A very interesting
observation is that by using RNS LRA representation and randomizing the input point,
but not the scalar, is leaking secret information. Another important remark is that the
LRA countermeasure is the best trade-off between security and performance compared to
traditional point blinding, which is usually 2− 20% more expensive to implement in RNS.

278 Practical Evaluation of Protected RNS SM

Table 1: Collective Evaluation Table

Algorithm Welch t-test Welch t-test TA TA PO
r-vs-f scalar r-vs-f point Data Location

unprotected() 7 7 7 7 0%
rdm_point() 7 7 7 7 52%
LRA() 7 7 7 7 50%
protected_LRA() 7 3 7 7 110%
unprotected_rdm_scalar() 3 N/A 3 7 19%
rdm_point_rdm_scalar() 3 N/A 3 7 54%
LRA_rdm_scalar() 3 N/A 3 7 51%
protected_rdm_scalar() 3 N/A 3 3 110%
unprotected_unified() 7 7 7 7 19%
rdm_point_unified() 7 7 7 7 99%
LRA_unified() 7 7 7 7 72%
protected_unified() 3 3 7 7 144%
LRA_nc_rdm_operat() 7 3 3 3 76%
LRA_nc_rdm_operat_rdm_scal() 3 N/A 3 3 76%

6 Conclusions

In this section we summarize the conclusions of our practical evaluation of RNS imple-
mentations with various countermeasures. Different RNS representations of elliptic curve
points, randomization of the input point, scalar randomization and the regularity of MPL
during scalar multiplication are good countermeasures to protect against horizontal type
of attacks and SPA. However, even in the presence of these countermeasures the TVLA
results show that leakage is still present most of the times. When two countermeasures
are combined, but the secret scalar is not randomized, there seems to be still exploitable
leakage. The TVLA results are verified by high classification levels for two types of
template attacks in the presence of countermeasures. When we randomize secret data, it
is shown that data dependent template attacks are not successful, but the manipulated
registers can still give very high classification results for the correct scalar guess.

Another important contribution of this work is for evaluators; they should not take the
TVLA bounds as rigid, since our evaluation shows that for public key cryptography the
typical threshold of ±4.5 is not correct. TVLA threshold should be established every time
according to the distribution of the traces and the number of samples.

As future work, it would be interesting to investigate further the possibilities of location
dependent template attacks in the presence of countermeasures. The classification rates
for templates of the algorithms that use randomization of the RNS operations is also an
interesting follow-up work that could investigate clustering and other algorithms from
machine learning. Furthermore, evaluating the combination of these countermeasures in a
FPGA implementation of RNS with parallel execution of the RNS operations for various
moduli sizes would give further insights in the security of RNS.

Acknowledgments

We would like to thank N. Sklavos for encouraging initial findings of this research and I.
Kizhvatov for technical support at the lab of Radboud. We appreciate the recommendations
and useful comments of the anonymous reviewers that helped us to improve this work.

L. Papachristodoulou, A. P. Fournaris, K. Papagiannopoulos and L. Batina 279

References
[AARR03] Dakshi Agrawal, Bruce Archambeault, Josyula R. Rao, and Pankaj Rohatgi.

The EM side channel(s). In Burton S. Kaliski, çetin K. Koç, and Christof
Paar, editors, Cryptographic Hardware and Embedded Systems - CHES 2002,
pages 29–45, Berlin, Heidelberg, 2003. Springer Berlin Heidelberg.

[BBJ+08] Daniel J. Bernstein, Peter Birkner, Marc Joye, Tanja Lange, and Christiane
Peters. Twisted Edwards Curves. In Serge Vaudenay, editor, Progress in
Cryptology – AFRICACRYPT 2008, volume 5023 of LNCS, pages 389–405.
SV, 2008. http://cr.yp.to/papers.html#twisted.

[BCLN16] Joppe W. Bos, Craig Costello, Patrick Longa, and Michael Naehrig. Select-
ing elliptic curves for cryptography: an efficiency and security analysis. J.
Cryptographic Engineering, 6(4):259–286, 2016.

[BCP+14] Lejla Batina, Lukasz Chmielewski, Louiza Papachristodoulou, Peter Schwabe,
and Michael Tunstall. Online template attacks. In proc. of 15th International
Conference on Cryptology in India INDOCRYPT 2014, New Delhi, India,
Dec. 14-17, 2014, pages 21–36, 2014.

[BDK97] J.-C. Bajard, L.-S. Didier, and P. Kornerup. An RNS Montgomery modular
multiplication algorithm. In Proc.13th IEEE Symp. on Comp. Arithmetic,
pages 234–239. IEEE Comput. Soc, 1997.

[BDK01] J.-C. Bajard, L.-S. Didier, and P. Kornerup. Modular multiplication and base
extensions in residue number systems. In Proceedings 15th IEEE Symposium
on Computer Arithmetic. ARITH-15 2001, pages 59–65. IEEE Comput. Soc,
2001.

[BDL97] Dan Boneh, Richard A. DeMillo, and Richard J. Lipton. On the impor-
tance of checking cryptographic protocols for faults (extended abstract). In
EUROCRYPT’97, pages 37–51, 1997.

[BDM06] Jean-Claude Bajard, Sylvain Duquesne, and Nicolas Meloni. Combining Mont-
gomery Ladder for Elliptic curves defined over Fp and RNS Representation.
01 2006.

[BEG13] Jean-Claude Bajard, Julien Eynard, and Filippo Gandino. Fault Detection in
RNS Montgomery Modular Multiplication. In IEEE 21st Symp. on Comp.
Arithmetic, pages 119–126. IEEE, April 2013.

[BEHZ16] Jean-Claude Bajard, Julien Eynard, M. Anwar Hasan, and Vincent Zucca. A
full RNS variant of FV like somewhat homomorphic encryption schemes. In
Selected Areas in Cryptography - SAC 2016 - 23rd International Conference,
St. John’s, NL, Canada, August 10-12, 2016, Revised Selected Papers, pages
423–442, 2016.

[BGG+14] Josep Balasch, Benedikt Gierlichs, Vincent Grosso, Oscar Reparaz, and
François-Xavier Standaert. On the cost of lazy engineering for masked software
implementations. In Smart Card Research and Advanced Applications - 13th
International Conference, CARDIS 2014, Paris, France, November 5-7, 2014.
Revised Selected Papers, pages 64–81, 2014.

[BGRV15] Josep Balasch, Benedikt Gierlichs, Oscar Reparaz, and Ingrid Verbauwhede.
DPA, Bitslicing and Masking at 1 GHz. In Cryptographic Hardware and
Embedded Systems - CHES 2015 - 17th International Workshop, Saint-Malo,
France, September 13-16, 2015, Proceedings, pages 599–619, 2015.

http://cr.yp.to/papers.html#twisted

280 Practical Evaluation of Protected RNS SM

[BILT04] Jean-Claude Bajard, Laurent Imbert, Pierre-Yvan Liardet, and Yannick Teglia.
Leak resistant arithmetic. In Cryptographic Hardware and Embedded Systems
- CHES 2004: 6th International Workshop Cambridge, MA, USA, August
11-13, 2004. Proceedings, pages 62–75, 2004.

[BKP09] Jean-Claude Bajard, Marcello Kaihara, and Thomas Plantard. Selected
RNS Bases for Modular Multiplication. In 2009 19th IEEE Symp. on Comp.
Arithmetic, pages 25–32. IEEE, June 2009.

[BT15] Karim Bigou and Arnaud Tisserand. Single base modular multiplication for
efficient hardware RNS implementations of ECC. In Cryptographic Hardware
and Embedded Systems - CHES 2015 - 17th International Workshop, Saint-
Malo, France, September 13-16, 2015, Proceedings, pages 123–140, 2015.

[CATB18] Jerome Courtois, Lokman Abbas-Turki, and Jean-Claude Bajard. Evaluation
of Resilience of randomized RNS implementation. Cryptology ePrint Archive,
Report 2018/009, 2018. https://eprint.iacr.org/2018/009.

[CMV+17] Lukasz Chmielewski, Pedro Maat Costa Massolino, Jo Vliegen, Lejla Batina,
and Nele Mentens. Completing the complete ECC formulae with countermea-
sures. Journal of Low Power Electronics and Applications, 7(1), 2017.

[CNPQ04] Mathieu Ciet, Michael Neve, Eric Peeters, and Jean-Jacques Quisquater.
Parallel FPGA implementation of RSA with Residue Number Systems - Can
side-channel threats be avoided? - extended version. Cryptology ePrint
Archive, Report 2004/187, 2004.

[CRR03] Suresh Chari, Josyula R. Rao, and Pankaj Rohatgi. Template attacks. In
Burton S. Kaliski, Çetin K. Koç, and Christof Paar, editors, Cryptographic
Hardware and Embedded Systems - CHES 2002, pages 13–28, Berlin, Heidel-
berg, 2003. Springer Berlin Heidelberg.

[DSVC14] François Durvaux, François-Xavier Standaert, and Nicolas Veyrat-Charvillon.
How to certify the leakage of a chip? In Phong Q. Nguyen and Elisabeth
Oswald, editors, Advances in Cryptology – EUROCRYPT 2014, pages 459–476,
Berlin, Heidelberg, 2014. Springer Berlin Heidelberg.

[ESJ+13] Mohammad Esmaeildoust, Dimitrios Schinianakis, Hamid Javashi, Thanos
Stouraitis, and Keivan Navi. Efficient RNS implementation of elliptic curve
point multiplication over gf(p). IEEE Trans. VLSI Syst., 21(8):1545–1549,
2013.

[FHY07] Jianqing Fan, Peter Hall, and Qiwei Yao. To how many simultaneous hypoth-
esis tests can normal, student’s t or bootstrap calibration be applied? Journal
of the American Statistical Association, 102:1282–1288, 2007.

[FKSK15] Apostolos P. Fournaris, Nicolaos Klaoudatos, Nicolas Sklavos, and Christos
Koulamas. Fault and power analysis attack resistant RNS based Edwards curve
point multiplication. In Proceedings of the 2nd Workshop on Cryptography
and Security in Computing Systems, CS2 at HiPEAC 2015, Amsterdam,
Netherlands, January 19-21, 2015, pages 43–46, 2015.

[Fou] Apostolos P. Fournaris. RNS_LRA_EC_scalar Multiplier. https://github.
com/afournaris/RNS_LRA_EC_Scalar_Multiplier.

[Fou17] Apostolos P Fournaris. Fault and Power Analysis Attack Protection Tech-
niques for Standardized Public Key Cryptosystems, pages 93–105. Springer
International Publishing, Cham, 2017.

https://eprint.iacr.org/2018/009
https://github.com/afournaris/RNS_LRA_EC_Scalar_Multiplier
https://github.com/afournaris/RNS_LRA_EC_Scalar_Multiplier

L. Papachristodoulou, A. P. Fournaris, K. Papagiannopoulos and L. Batina 281

[FPBS16] A. P. Fournaris, L. Papachristodoulou, L. Batina, and N. Sklavos. Residue
number system as a side channel and fault injection attack countermeasure in
elliptic curve cryptography. In 2016 International Conference on Design and
Technology of Integrated Systems in Nanoscale Era (DTIS), pages 1–4, April
2016.

[FPS17] Apostolos P. Fournaris, Louiza Papachristodoulou, and Nicolas Sklavos. Secure
and Efficient RNS Software Implementation for Elliptic Curve Cryptography.
In 2017 IEEE Eur. Symp. Secur. Priv. Work., pages 86–93. IEEE, apr 2017.

[FV06] Guillaume Fumaroli and David Vigilant. Blinded fault resistant exponentiation.
In FDTC, pages 62–70, 2006.

[FV12a] Junfeng Fan and Ingrid Verbauwhede. An updated survey on secure ECC
implementations: Attacks, countermeasures and cost. Cryptography and
Security: From Theory to Applications, 6805:265–282, January 2012.

[FV12b] Junfeng Fan and Frederik Vercauteren. Somewhat practical fully homomorphic
encryption. Cryptology ePrint Archive, Report 2012/144, 2012. https:
//eprint.iacr.org/2012/144.

[Gir06] Christophe Giraud. An RSA implementation resistant to Fault Attacks and to
Simple Power Analysis. IEEE Trans. on Computers, 55(9):1116–1120, 2006.

[GJJR11] Gilbert Goodwill, Benjamin Jun, Josh Jaffe, and Pankaj Rohatgi. P.: A testing
methodology for side channel resistance validation, 2011. NIST non-invasive
attack testing workshop.

[Gui10] Nicolas Guillermin. A high speed coprocessor for elliptic curve scalar multipli-
cations over Fp. Lecture Notes in Computer Science Advances in Cryptology
Cryptographic Hardware and Embedded Systems CHES 2010, pages 48–64,
2010.

[Gui11] Nicolas Guillermin. A coprocessor for secure and high speed modular arith-
metic. IACR Cryptology ePrint Archive, 2011.

[HMH+12] Johann Heyszl, Stefan Mangard, Benedikt Heinz, Frederic Stumpf, and Georg
Sigl. Localized electromagnetic analysis of cryptographic implementations. In
Topics in Cryptology - CT-RSA 2012 - The Cryptographers’ Track at the RSA
Conference 2012, San Francisco, CA, USA, February 27 - March 2, 2012.
Proceedings, pages 231–244, 2012.

[HPS18] Shai Halevi, Yuriy Polyakov, and Victor Shoup. An Improved RNS Variant
of the BFV Homomorphic Encryption Scheme. Cryptology ePrint Archive,
Report 2018/117, 2018. https://eprint.iacr.org/2018/117.

[Ins] Inspector SCA Tool. https://www.riscure.com/security-tools/
inspector-sca/. Accessed: 2017-12-14.

[JRW11] Josh Jaffe, Pankaj Rohatgi, and Marc Witteman. Efficient side channel testing
for public key algorithms: RSA case study, 2011.

[JY03] Marc Joye and Sung-Ming Yen. The Montgomery Powering Ladder. In 4th
CHES 2003, pages 291–302, UK, 2003. Springer-Verlag.

[KJJ99] Paul Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis. In
in Proc. of CRYPTO ’99, pages 388–397. Springer-Verlag, 1999.

https://eprint.iacr.org/2012/144
https://eprint.iacr.org/2012/144
https://eprint.iacr.org/2018/117
https://www.riscure.com/security-tools/inspector-sca/
https://www.riscure.com/security-tools/inspector-sca/

282 Practical Evaluation of Protected RNS SM

[KKSS00] Shinichi Kawamura, Masanobu Koike, Fumihiko Sano, and Atsushi Shimbo.
Cox-rower architecture for fast parallel montgomery multiplication. In Ad-
vances in Cryptology EUROCRYPT, 2000.

[MO09] Marcel Medwed and Elisabeth Oswald. Template attacks on ECDSA. In
Kyo-Il Chung, Kiwook Sohn, and Moti Yung, editors, Information Security
Applications, volume 5379, pages 14–27, 2009.

[NLD15] Erick Nascimento, Julio López, and Ricardo Dahab. Efficient and Secure
Elliptic Curve Cryptography for 8-bit AVR Microcontrollers, pages 289–309.
Springer International Publishing, Cham, 2015.

[OPB16] Elif Özgen, Louiza Papachristodoulou, and Lejla Batina. Template attacks
using classification algorithms. In 2016 IEEE International Symposium on
Hardware Oriented Security and Trust, HOST 2016, McLean, VA, USA, May
3-5, 2016, pages 242–247, 2016.

[PITM13] Guilherme Perin, Laurent Imbert, Lionel Torres, and Phillipe Maurine. Elec-
tromagnetic analysis on RSA algorithm based on RNS. In 2013 Euromicro
Conference on Digital System Design (DSD), number 1, pages 345–352, 2013.

[PITM14] Guilherme Perin, Laurent Imbert, Lionel Torres, and Philippe Maurine. At-
tacking randomized exponentiations using unsupervised learning. In COSADE,
volume 8622 of Lecture Notes in Computer Science, pages 144–160. Springer,
2014.

[RSVC+11] Mathieu Renauld, François-Xavier Standaert, Nicolas Veyrat-Charvillon, Dina
Kamel, and Denis Flandre. A formal study of power variability issues and
side-channel attacks for nanoscale devices. In Kenneth G. Paterson, editor, Ad-
vances in Cryptology – EUROCRYPT 2011, pages 109–128, Berlin, Heidelberg,
2011. Springer Berlin Heidelberg.

[SS13] Dimitrios Schinianakis and Thanos Stouraitis. Hardware-fault attack han-
dling in RNS-based Montgomery multipliers. In 2013 IEEE International
Symposium on Circuits and Systems (ISCAS2013), pages 3042–3045. IEEE,
May 2013.

[TG16] Michael Tunstall and Gilbert Goodwill. Applying TVLA to Public Key
Cryptographic Algorithms. IACR Cryptology ePrint Archive, 2016:513, 2016.

[UHSS17] Florian Unterstein, Johann Heyszl, Fabrizio De Santis, and Robert Specht.
Dissecting leakage resilient prfs with multivariate localized EM attacks - A
practical security evaluation on FPGA. In COSADE, volume 10348 of Lecture
Notes in Computer Science, pages 34–49. Springer, 2017.

[ZDD+17] Liwei Zhang, A. Adam Ding, François Durvaux, François-Xavier Standaert,
and Yunsi Fei. Towards sound and optimal leakage detection procedure. IACR
Cryptology ePrint Archive, 2017:287, 2017.

	Introduction
	Residue Number System
	RNS arithmetic for ECC
	RNS Base Extension
	Using RNS for SCA resistance
	RNS Scalar Multiplication Implementations

	Practical Evaluation of RNS using TVLA
	Theory of TVLA
	Proposed TVLA threshold for public key algorithms
	Experimental setup
	Processing of traces and alignment technique
	TVLA Analysis & Results
	Secure twisted Edwards curve and unified formulas
	Secure twisted Edwards curve with randomized RNS operations

	Template Attacks on RNS scalar multiplication
	Data dependent leakage
	Location dependent leakage

	Performance impact of countermeasures
	Conclusions

