
Mind the Gap: Towards Secure 1st-order
Masking in Software

Kostas Papagiannopoulos1? and Nikita Veshchikov2??

1 Radboud Universiteit, Nijmegen, Netherlands
2 Quality and Security of Information Systems, Département d’informatique,

Université Libre de Bruxelles, Belgium

Abstract. Cryptographic implementations are vulnerable to side-channel
analysis. Implementors often opt for masking countermeasures to protect
against these types of attacks. Masking countermeasures can ensure the-
oretical protection against value-based leakages. However, the practical
effectiveness of masking is often halted by physical effects such as glitches
and distance-based leakages, which violate the independent leakage as-
sumption (ILA) and result in security order reductions. This paper aims
to address this gap between masking theory and practice in the follow-
ing threefold manner. First, we perform an in-depth investigation of the
device-specific effects that invalidate ILA in the AVR microcontroller
ATMega163. Second, we provide an automated tool, capable of detect-
ing ILA violations in AVR assembly code. Last, we craft the first (to our
knowledge) “hardened” 1st-order ISW-based, masked Sbox implemen-
tation, which is capable of resisting 1st-order, univariate side-channel
attacks. Enforcing the ILA in the masked RECTANGLE Sbox requires
1319 clock cycles, i.e. a 15-fold increase compared to a naive 1st-order
ISW-based implementation.

Keywords: Masking, AVR, verification tool, simulator, independent
leakage assumption, distance-based leakage, RECTANGLE, SCA

1 Introduction

Nowadays, the explosive growth of the “Internet of Things” (IoT) is reshaping
modern society, pervading its infrastructure and communications. The rapid
price drop in IoT components has transformed everyday products, enhancing
them with network connectivity and information exchange capabilities. Amidst
this new status quo, devices, ranging from cheap sensors to expensive vehicles,
are required to maintain a heightened level of theoretical and physical security.

? The work described in this paper has been supported by the Netherlands Organiza-
tion for Scientific Research NWO under project ProFIL (628.001.007).

?? This work is the result of a short term scientific mission that has been supported by
ICT COST Action IC1204: “Trustworthy Manufacturing and Utilization of Secure
Devices”

2 Kostas Papagiannopoulos and Nikita Veshchikov

For instance, side-channel attacks (SCA) allow adversaries to recover sensi-
tive data, by observing and analyzing the physical characteristics and emana-
tions of a cryptographic implementation [19]. Such physical attacks motivated
research towards countermeasures that perform noise amplification, thus hinder-
ing the adversary’s recovery capabilities. A common choice for provably secure,
noise-amplifying software countermeasure is masking [9, 18]. Masking employs
secret-sharing techniques that establish theoretical security against the value-
based leakage model. Rephrasing, masking secures implementations against ad-
versaries that can only extract information about the value being processed at
a given time. This underlying assumption is often referred to as the independent
leakage assumption (ILA) [24]. Unfortunately, the exact values under manipu-
lation are not always visible at a given layer of abstraction, e.g. at assembly
code and such a limited adversarial model is not applicable in many practi-
cal, software-based scenarios. For instance, devices often exhibit distance-based
leakages, which can reduce the security of the masking countermeasure [1, 14].
Likewise, coupling effects [24] and glitches [20] can pose similar security hazards.

This work attempts to bridge the gap between theory and practice in the
masking countermeasure with the following threefold contribution. First, we in-
vestigate several effects that violate ILA in an ATMega163 microcontroller and
subsequently, we establish solutions that mitigate these issues. Second, we use
this knowledge in order to build an assembly-oriented tool that is capable of de-
tecting ILA violations in AVR-based masked implementations. Third, assisted
by the developed tool, we craft the first (to our knowledge) 1st-order masked
implementation in ATMega163 that is capable of resisting 1st-order, univari-
ate attacks. In other words, we enforce the ILA in order to severely limit the
informativeness of 1st-order leakages, forcing the adversary to resort to 2nd-
order attacks. As a proof of concept, we develop a “hardened” 1st-order, ISW-
based [18], bitsliced Sbox for the RECTANGLE cipher [35]. The “hardened”
implementation requires 1319 clock cycles, a 15-fold increase compared to a
“naive” 1st-order, ISW-based, bitsliced Sbox of the same cipher.

The rest of this paper is organized as follows. In Section 2, we provide prelim-
inaries w.r.t. masking, the experimental setup and the evaluation techniques we
employ. In Section 3 we offer a detailed description of all the ILA-breaching ef-
fects that we have identified in ATMega163. Section 4 discusses the development
of the assembly verification tool. Section 5 details the construction of a “hard-
ened” RECTANGLE, 1st-order masked Sbox for ATMega163. We conclude and
discuss future work in Section 6.

2 Background

2.1 Boolean Masking & Order Reduction

Chari et al., Goubin et al. and Messerges [9, 15, 21] were among the first to
suggest splitting intermediate values with a secret sharing scheme, in order
to force attackers to analyze higher-order statistical moments. Analytically, a

Mind the Gap: Towards Secure 1st-order Masking in Software 3

dth-order Boolean masking scheme splits a sensitive value x into d + 1 shares
(x0, x1, . . . , xd), as shown below.

x = x0 ⊕ x1 ⊕ · · · ⊕ xd (1)

The shares (x0, x1, . . . , xd) are also referred to as the (d + 1)-family of shares
corresponding to x [26]. Given that the ILA holds and assuming sufficient noise,
it has been shown that the number of traces required for a successful attack
grows exponentially w.r.t. the order d [9, 23]. Several implementation options
have been suggested for the masking countermeasure, ranging from lookup-table
techniques [11,32] to GF -based circuits [8, 16,18,26].

In parallel with the development of masked implementations, side-channel
research focused on the practical evaluation of the countermeasure. Balasch et
al. [1] put forward the concepts of value-based and distance-based leakages, as
well as the notion of order reduction. We briefly restate their definitions below.

Value/Distance-based leakage function A leakage function L(.) consists of
a deterministic part Ld(.) and random additive noise N . The leakage function is
value-based if Ld(.) can only take arguments from the set of intermediate values
produced by the masking scheme. The leakage is distance-based if Ld(.) can
take arguments from the set that contains all possible pairwise combinations
of intermediate values. The combination can imply operations such as XOR,
concatenation, etc.

Order-reduction theorem A dth-order secure masking scheme under value-
based leakages is bd2cth-order secure under distance-based leakages.

The applicablity of the order-reduction theorem has been verified experi-
mentally by Balasch et al. [1] for orders d = 1, 2 in AVR-based and 8051-based
devices. De Groot et al. [14] have verified experimentally the theorem’s applica-
bility for orders d = 1, 2 in the ARM Cortex-M4.

2.2 Experimental Setup & Evaluation

The implementation and SCA evaluation is performed on a smartcard equipped
with an 8-bit, AVR-based ATMega163 microcontroller3. The device features a
4.4 MHz clock, 1024 bytes of SRAM and 17 Kbytes of Flash memory. The
acquisition of power traces is carried out using the Riscure PowerTracer4 and
the Picoscope 5203 oscilloscope. The sampling rate is set at 31.5 MSamples/sec
and the only post-processing applied is signal alignment.

The evaluation of the actual security order of a masking scheme is, in gen-
eral, an open problem. We often face the limited attack scope, i.e. a given attack
may not be able to exploit the available leakage due to e.g. an unsuitable choice
of intermediate values or an incorrect power model. To address this problem,
generic side-channel distinguishers and extensive profiling techniques have been

3 http://www.atmel.com/images/doc1142.pdf
4 https://www.riscure.com/security-tools/hardware/power-tracer

4 Kostas Papagiannopoulos and Nikita Veshchikov

developed [3, 28, 33]. In this work, we opt for the leakage detection methodol-
ogy [10] which prioritizes leakage detection over leakage exploitation, speeding
up certain evaluation aspects. In detail, we employ the random vs. fixed, non-
specific, 1st-order t-test. We perform a random vs. fixed acquisition and obtain
two distinct tracesets Sfixed and Srandom, under the same encryption key. The
input plaintext for Sfixed is set to a fixed value, while for Srandom, the input is
uniformly random. The implementation receives the fixed or random plaintext in
a non-deterministic and randomly-interleaved way (as recommended by Schnei-
der et al. [27]). Following the data acquisition, the 1st-order t-test will assess
whether the two sets Sfixed, Srandom stem from the same population, using the
following statistical test.

Hnull : µfixed = µrandom

Halt : µfixed 6= µrandom
(2)

w =
µfixed − µrandom√
σ2
fixed

n +
σ2
random

m

υ =
(
σ2
fixed

n +
σ2
random

m)2

σ4
fixed

n2(n−1) +
σ4
random

m2(m−1)

(3)

Parameters µx and σ2
x are the estimated mean and variance of set x; n and m

denote sizes of sets Sfixed and Srandom respectively. The null hypothesis Hnull

is rejected at a given level of significance α (often set to 0.99999), if |w|> tα/2,υ,
where tα/2,υ is the value of the Student t distribution with υ degrees of freedom.
In the evaluation context, rejecting Hnull implies leakage detection, i.e. potential
evidence of an ineffective masking scheme.

In this paper, we will use the t-test as a detection tool w.r.t. ILA-breaching
effects and their solutions (see Section 3). Still, we will also employ 1st-order
CPA methods [7] in order to demonstrate the exploitability of such effects. In
order to reduce the computational cost of the evaluation, we use the memoryless
formulas suggested by Schneider et al. [27] and the incremental approach for
CPA by Botinelli et al. [6].

3 ILA-Breaching Effects

In this section, we present three effects identified in the ATMega163 microcon-
troller that breach ILA and pose a hazard to any masking scheme’s security.
Analytically, the effects below demonstrate that independent computations do
not necessarily lead to independent leakages and thus, the order-reduction the-
orem can become applicable.

Every effect (Sections 3.1, 3.2 and 3.3) is described as a standalone, assembly-
based scenario that manipulates two 4-bit shares x0, x1 originating from the
sensitive, key-dependent, 4-bit value x, such that x = x0 ⊕ x1. The shares x0,
x1 are always manipulated in a theoretically sound manner, adhering to the
masking scheme’s requirements, i.e. we never combine the shares directly (e.g.
via an exclusive-or instruction eor x0, x1).

Mind the Gap: Towards Secure 1st-order Masking in Software 5

For all the described scenarios, that are theoretically sound, we show experi-
mentally that ILA is not fulfilled by employing 1st-order, univariate techniques.
Namely, we perform correlation-based analysis [7], computing the correlation co-
efficient ρ between the Hamming weight of the sensitive, key-dependent value x
and the experimentally acquired traceset. To maintain a wide attack scope, we
also use the leakage detection methodology [10, 27] and compute the 1st-order,
random vs. fixed t-test. We conclude every scenario by suggesting possible solu-
tions that enforce ILA. Restating Balasch et al. [1], as we are always limited by
the traces at hand, we cannot rule out the existence of 1st-order leakages, yet we
establish that their informativeness is limited compared to 2nd-order leakages
in the target device. Note that extra care is taken in order to assess all effects
independently, i.e. we use the suggested solutions so as to isolate the effect under
discussion from the rest.

The analyzed effects can manifest in several data storage units (e.g. regis-
ters, SRAM/Flash memory cells, I/O buffers, etc.) and may relate to different
instructions of the AVR ISA5, leading to a very large number of potential sce-
narios. In order to maintain a feasible scope, we limit our discussion to storage
units and instructions that are often encountered in the context of cryptographic
implementations, i.e. SRAM memory accesses and logical instructions.

3.1 Overwrite Effect

The overwrite effect is observable when a share gets overwritten by a different
share from the same family. For instance, if share x0 in a data storage unit (regis-
ter, memory cell, etc.) gets overwritten by share x1, then the power consumption
correlates with the number of bits switched i.e. x0⊕x1. This effect was observed
by Daemen et al. [30] and later revisited by Coron et al. [12].

Below, we address the most common situations in which overwriting arises
during a cryptographic implementation. We perform two experiments: a register-
based overwrite via the instruction mov x0, x1, and a memory-based overwrite
via the instruction st SRAM x0, x1. The experiments are described in List-
ings 1.1 and 1.2. Their analysis follow in Figure 1.

We confirm that overwriting is indeed an ILA-breaching effect, manifesting
both in registers and SRAM memory. Note that the exploitability of the effect
varies according to the data storage unit: in ATMega163, register-based overwrit-
ing can be exploited with roughly 500 traces (1a), while memory-based requires
at least 40k traces (1c). Preventing register and memory-based overwrites is
straightforward: the corresponding register (or memory cell) needs to be cleared
in advance.

5 http://www.atmel.com/images/Atmel-0856-AVR-Instruction-Set-Manual.pdf

6 Kostas Papagiannopoulos and Nikita Veshchikov

(a) Register overwrite, 1st-order CPA, HW
model, 500 traces.

(b) Register overwrite, 1st-order t-test, 5k
random vs. 5k fixed.

(c) Memory overwrite, 1st-order CPA, HW
model, 65k traces.

(d) Memory overwrite, 1st order t-test, 50k
random vs. 50k fixed.

Fig. 1: Register/memory-based overwrite effects

1 ; s h a r e x0 i n r17
2 ; s h a r e x1 i n r23
3 mov r17 , r23
4 ;
5 ;

Listing 1.1: Register overwrite
experiment.

1 ; s h a r e x0 i n SRAM 0x0080
2 ; s h a r e x1 i n r17
3 l d i r27 , 0 x00
4 l d i r26 , 0 x80
5 s t X, r17

Listing 1.2: Memory overwrite
experiment.

3.2 Memory Remnant Effect

The memory remnant effect is a leakage originating from consecutive SRAM
accesses to shares of the same family. Assume that shares x0, x1 are stored in
SRAM cells and get accessed sequentially. Naturally, the first access leaks share
x0 (value-based leakage), yet it also creates a “remnant” of x0. The second access
will leak the transition of the share x1 and the remnant x0, reducing the security.

Mind the Gap: Towards Secure 1st-order Masking in Software 7

1 ; s h a r e x0 i n 0 x0080
2 ; s h a r e x1 i n 0 x0090
3 l d i r27 , 0 x00
4 l d i r26 , 0 x80
5 l d r17 , X
6 l d i r27 , 0 x00
7 l d i r26 , 0 x90
8 l d r20 , X
9 ;

10 ;

Listing 1.3: Memory remnant
experiment.

1 ; s h a r e x0 i n 0 x0080
2 ; s h a r e x1 i n 0 x0090
3 l d i r27 , 0 x00
4 l d i r26 , 0 x80
5 l d r17 , X
6 l d i r17 , 0 x00
7 l d i r26 , 0 x85
8 l d r17 , X
9 l d i r26 , 0 x90

10 l d r20 , X

Listing 1.4: Clearing remnant
experiment.

(a) Memory remnant effect,1st-order CPA,
HW model, 500 traces.

(b) Memory remnant effect, 1st-order t-test,
5k random vs. 5k fixed.

(c) Clearing remnant effect,1st-order CPA,
HW model, 100k traces.

(d) Clearing remnant effect, 1st-order t-test,
100k random vs. 100k fixed.

Fig. 2: Memory-based remnant effect

We address the remnant scenario with two experiments. Listing 1.3 demon-
strates how two consecutive SRAM accesses ld rA, SRAM x0, followed by ld

rB, SRAM x1 produce the remnant effect. Second, in Listing 1.4, we show how
clearing the register and accessing an unrelated SRAM address (0x0085) can
remove the remnant.

8 Kostas Papagiannopoulos and Nikita Veshchikov

As shown in Figures 2a and 2b, consecutive SRAM accesses can potentially
lead to ILA violations. Exploiting (in a univariate manner) the memory remnant
effect in ATMega163 needs less than 500 traces with our setup. Preventing the
effect requires the clearing of the register and the insertion of a dummy SRAM
access. Alternatively, the implementor could ensure that same-family shares are
not accessed sequentially. Note also that the st instruction produces a similar
effect. We speculate that the memory remnant effect is caused by the structure
of the the memory access mechanism and potentially, the pipelining stages.

3.3 Neighbour Leakage Effect

The neighbour leakage effect implies that accessing or processing the contents
of a data storage unit will cause leakage in another unit as well. For example,
assume that share x0 is stored in register rB and share x1 is being processed in
register rA. Assume also that the registers rA, rB are subject to the neighbour
leakage effect. Processing rB will produce a value-based leakage of x0. At the
same time, the neighbouring leakage effect will cause rA to leak the value of
x1, resulting in transition between shares and the recovery of sensitive value x.
The following two experiments (Listing 1.5) verify the neighbour leakage effect
between registers r2, r3, i.e. a share stored in r2 leaks when manipulating r3

and vice-versa.

1 ; c l e a r a l l r e g i s t e r s
2 ; s e n s i t i v e ’ x ’ i s i n the s e l e c t e d r e g i s t e r (r2 OR r3)
3 mov r0 , r0
4 nop ; 5 t imes
5 mov r1 , r1
6 nop ; 5 t imes
7 mov r2 , r2
8 nop ; 5 t imes
9 mov r3 , r3

10 nop ; 5 t imes
11 . . .
12 mov r31 , r31

Listing 1.5: Neighbour leakage experiment for r2 and r3.

As shown above, we use the same code from Listing 1.5, but in the first time
we put the sensitive variable x into register r2 (only line 7 should result in leak-
age). In the second time, we put the sensitive value into the register r3 (only
line 9 should leak). However, Figure 3 shows that both register accesses leak. As
a result, we have identified a pair of data storage units (r2,r3) that exhibit the
neighbour leakage effect. Note that in this case the effect is symmetrical, i.e.,
r2 triggers r3 and vice-versa (Figures 3a and 3b). We also observed that the
effect is persistent, i.e. the mov instructions will trigger the same behavior, even
if performed later (not necessairly in order as in Listing 1.5). We run the same
experiment in order to identify all possible neighbour leakages in the register file
(all pairs in set {r0,...,r31}). The results are available in the Appendix, ma-
trix R. The issue mostly affects consecutive registers, although exceptions exist,

Mind the Gap: Towards Secure 1st-order Masking in Software 9

(a) Correlation ρ(HW (x0), traceset), r2-r3,
5k traces.

(b) Correlation ρ(HW (x0), traceset), r3-r2,
5k traces.

Fig. 3: Neighbour-based leakage effect

e.g. register r0. We did not identify a similar effect in SRAM memory, yet our
experiments were limited to a small region of cells. Neighbour-like effects have
been observed in consecutive instructions, yet it remains open whether they are
cause by proximity or they stem from other effects. We speculate that they relate
to the structure of the register file and likely involve the storage and multiplex-
ing mechanism of the registers. Given the pairwise manifestation of the effect,
we speculate a pair-based organization of the register file. Still, note that it is
hard to link architectural options at the hardware layer directly to side-channel
effects. As a solution to the neighbour effect, the developer can opt to avoid stor-
ing shares in hazardous registers and keep a safety distance between consecutive
instructions. Alternatively, he can store all shares in SRAM, except for the ones
currently in use.

Summing up, we stress the following focal points regarding the ILA-breaching
effects and their solutions:

– All identified effects are device-dependent, i.e. there is no hard guarantee
that they are observable and reproducible in different AVR-based microcon-
trollers, let alone different architectures such as ARM, TI, PIC etc. Both
intra-AVR and inter-architectural observability of the effects remains open.

– The effects are often counter-intuitive when viewed in the assembly layer
of abstraction. They originate from the hardware and/or the physical layer,
thus can only be detected via experimental evaluation. Linking the assem-
bly ILA-breaching effects to a particular hardware component or physical
phenomenon is non-trivial [24, 29], especially without knowledge of the un-
derlying chip architecture and properties.

– Since the effect’s detection requires experimental evaluation, different in-
structions or code arrangements can potentially lead to additional, unidenti-
fied ILA-breaching effects. Still, we maintain that it is possible to construct
“hardened” masked operations in ATMega163 by removing the identified

10 Kostas Papagiannopoulos and Nikita Veshchikov

effects (see Section 5). It remains open whether the suggested solutions are
computationally optimal or more efficient clearing techniques can be identi-
fied.

The takeaway message of this section is that assembly-level soundness cannot
enforce ILA and hence 1st-order security, due to the nature of the breaching
effects. However, it is possible to acquire sufficient knowledge about effects and
solutions in a particular device. These non-intuitive checks discussed above can
be subsequently integrated into a code-checking tool which can identify such
effects in assembly code.

4 Leakage Detection Tool

Several tools that can help designers of cryptographic systems were already
suggested and discussed in literature.

SILK6 presented in 2014 [31] can be used to generate simulated traces based
on C++ code. Thus, it allows to generate tracesets during the early stages of
development, in order to test an implementation against any attack. However,
SILK works only with high level, C++ source code and can not take into account
reordering or replacement (even removal) of instructions that is often used by
compilers during optimization. Also, this tool does not detect flaws in imple-
mentations, it only allows to easily generate simulated traces.

A tool based on formal verification was presented at EUROCRYPT in 2015 [2],
capable of detecting design flaws in masking schemes. This tool can analyze pro-
grams written using the EasyCrypt framework and its language and it requires
the designer to transform the original implementation (e.g. assembly or C code)
to EasyCrypt. Unfortunately, errors could potentially be introduced during this
process and there is no guarantee that the program written using EasyCrypt will
be equivalent to the program in the original programming language. To the best
of our knowledge, free automated tools that can transform C or assembly (or
other languages that are often used for development of cryptographic software
in embedded systems) programs to EasyCrypt do not exist. Moreover, this tool
is not opensource and thus can not be used by the developer community.

A simulation-based tool that can be used to analyze masking implemen-
tations was presented at FSE in 2016 [25]. It can be used with software and
hardware implementations and it requires only high-level implementation source
code, such as C language. Due to this fact it can also be blind to re-arrangements
of operations (which can lead to side-channel leakage) created by the compiler.
Until today, the source code of this tool also remains unavailable7.

4.1 ASCOLD

In order to assess the security of implementations at the assembly level, we de-
veloped a tool called ASCOLD, standing for Assembly Code Leakage Detection

6 http://www.ulb.ac.be/di/dpalab/download/SILK_v0.1.zip
7 We have contacted the author, there is intention to eventually publish the code.

Mind the Gap: Towards Secure 1st-order Masking in Software 11

tool. The tool is written in python and the source code is available on our web-
site8. ASCOLD uses assembly code as its input in order to run a simulation
while checking for potential issues that can cause side-channel information leak-
age. The tool is compatible only with assembly code (which can be used as is
during the development or extracted from the compiled binary file). Thus it is
possible to be sure that the executed code will be exactly the same as the code
which is analyzed. Otherwise, it becomes impossible to provide any guarantees
on the quality of the analysis, i.e. be sure that no additional issues are introduced
during compilation.

The simulation run by the tool does not use an instance of an execution
i.e., we do not use specific values in order to run the program. ASCOLD starts
a program in an initial state and propagates all changes such as combinations
of values, their modifications and replacements of one value by another. More
precisely, it keeps track of which shares or combinations of shares are stored
in each register (or memory cell). During any arithmetic or logical operation,
shares stored in different operands are verified, specifically we check whether we
combine different shares of the same family without randomizing beforehand.
Note that not all combinations are hazardous, yet we opt for such a conservative
approach in order to speed-up the verification process.

In the same way, we verify the implementation for the device-specific distance-
based leakages for every arithmetic/logical operation, SRAM store or load in-
struction that is executed. Analytically, we verify whether the previously stored
value and the new value cause the overwrite effect 3.1. Similarly, our tool checks
the load/store instructions for remnant effects discussed in Section 3.2. In ad-
dition, it features the matrix R of neighbours, which represents registers that
can leak while another register is used (neighbour leakage effect, Section 3.2).
In order to bootstrap the whole simulation, the developer needs to provide a
configuration file. The configuration file is a simple text file that contains infor-
mation about the initial state of the system i.e., it describes which registers or
addresses in memory contain different secret shares of sensitive values. As the
result of the simulation, ASCOLD prints out a line number and the rule that
was violated by the program.

ASCOLD works with the AVR family of microcontrollers, it implements the
most common memory instructions such as load and store as well as a set of com-
monly used (in cryptography) instructions such as arithmetic operations (add,
mul, . . .) and logical operations (and, eor, or, . . .). The same core principles
can be applied in order to build a similar tool for a different instruction set or
to add new AVR instructions supported by newer microcontrollers.

Limitations The current version of our tool incorporates our findings which
are based on the ATMega163, other models of microcontrollers might have
slightly different (even additional) issues that cause unintentional information
leakage. Among other things, leakage described in Section 3.2 is more likely to
be different (affecting different sets of registers) in other models of AVR micro-
controllers. ASCOLD does not take into account the effects of pipelining which

8 https://github.com/nikita-veshchikov/ascold

12 Kostas Papagiannopoulos and Nikita Veshchikov

might be an issue in case of a microcontroller which can potentially handle two
different shares of the same sensitive value (at different stages of the pipeline)
during the same clock cycle. We did not implement all AVR instructions, most
importantly the current version of ASCOLD does not support loops. However, we
implemented the most commonly used instructions and new instructions/rules
can be added due to the tool’s extensibility. The lack of jump instructions (loops)
can be disregarded via loop-unrolled implementations.

5 Hardened 1st-order Masked Sbox for RECTANGLE

We have discussed the ILA-breaching effects in Section 3 and integrated these
observations in the ASCOLD tool, described in Section 4. The current Section
builds up on these advances by putting forward a “hardened”, 1st-order masked,
ISW-based RECTANGLE Sbox. The desired aim is to produce an assembly-
based, lightweight Sbox implementation that is secure against 1st-order, univari-
ate attacks, hence forcing the attacker to resort to 2nd-order and/or multivariate
techniques.

Our implementation opts for a bitsliced [5, 13] representation, due to both
the bitsliced structure of RECTANGLE and to the GF (2)-oriented nature of the
ISW countermeasure. We employ a bitslicing factor of 2, i.e. we exploit the 8-bit
AVR architecture in order to process two 4-bit Sboxes in parallel (nibble-slicing).
The Sbox is decomposed into GF (2) operations which can be accelerated by via
SIMD-like, 8-bit assembly instructions. The decomposition suggested by Zhang
et al. [35] is optimal w.r.t. GF (2) multiplicative complexity, since Grosso et
al. [17] established that the minimum number of non-linear operations required
by 4x4 Sboxes is 4.

In order to “harden” the Sbox, we use the solutions suggested in Section 3
and follow two approaches: efficient and conservative. In the efficient approach,
after processing any share, we clear the registers on a need-to basis and insert
dummy ld instructions to avoid overwrite and remnant effects. We avoid neigh-
bouring leakage effects by always storing the shares in SRAM, i.e. the register file
contains only the shares used by the current instruction. In the conservative ap-
proach, we perform all the afore-mentioned clearing techniques. In addition, we
insert dummy st instructions and perform thorough register/memory clearing.
Both efficient and conservative approaches are applied to every single instruction
of the implementation, i.e. the cost is linear w.r.t. the number of instructions that
manipulate masked shares. The resulting computational overhead is significant:
the efficient “hardened” Sbox implementation runs in 993 clock cycles, i.e. almost
12 times slower compared to the “naive” 1st-order, ISW-based RECTANGLE
Sbox, which runs in 87 clock cycles. The conservative “hardened” Sbox imple-
mentation requires 1319 clock cycles, i.e. it is 15 times slower. Table 1 contains
a comparison between “naive” 1st-order, “naive” 2nd-order and efficient/con-
servative “hardened” 1st-order bitsliced implementations of the RECTANGLE
Sbox in AVR assembly.

Mind the Gap: Towards Secure 1st-order Masking in Software 13

Table 1: Masked Sbox comparison in ATMega163

Order d Hardened
Latency Throughput RNG
cycles bits/cycle ×10−3 bytes

Unprotected no 32 250 0

1st order
no 87 91 4
yes (eff.) 993 8 4
yes (cons.) 1319 6 4

2nd order no 775 10 12

(a) Efficient hardened Sbox, 1st-order t-test,
25k random vs. 25k fixed.

(b) Conservative hardened Sbox, 1st-order t-
test, 100k random vs. 100k fixed.

(c) Consevative hardened Sbox, 2nd-order t-
test, 25k random vs. 25k fixed.

(d) Naive Sbox, 1st-order t-test, 1k random
vs. 1k fixed.

Fig. 4: Hardened and naive Sbox evaluations

Using the random vs. fixed t-test, we evaluate the efficient and conservative
“hardened” 1st-order Sboxes, as well as the “naive” 1st-order Sbox. Using a 25k
random vs. 25k fixed t-test does not yield any statistically significant leakage
in the efficient “hardened” version (Figure 4a). However, we note that a 50k
random vs. 50k fixed t-test is able to detect leakage, i.e. trying to reduce the cost
of enforcing ILA can have a detrimental effect on security. For the conservative
“hardened” Sbox, a 100k random vs. 100k fixed t-test does not detect any leakage
(Figure 4b). Note that a 2nd-order 25k random vs. 25k fixed t-test on a chosen
sample window is able to detect leakage. Therefore, we conclude that for the

14 Kostas Papagiannopoulos and Nikita Veshchikov

given device, the informativeness of 1st-order attacks is substantially limited and
a 2nd-order attack is the preferable adversarial strategy (Figure 4c). Naturally,
the “naive” 1st-order version rejects the null hypothesis (Figure 4d) due to the
ILA-breaching effects and the 1st-order leakage can be easily exploited.

So far, the only way to guarantee the actual security order of a real-world
implementation was to increase the scheme’s theoretical order d, in order to en-
sure that the implementation attains an actual order of bd2c [1,14]. Clearing the
ILA-breaching effects requires a significant overhead and is device-dependent,
yet it is the only technique known to us that can enforce 1st-order, univariate
security. In addition, hardening does not increase the scheme order d, thus the
random number generation (RNG) cost is not increased. The previous sugges-
tions require a higher scheme order, hence a significant overhead, since both the
implementation cost and the RNG cost are quadratic w.r.t. the order. We com-
pare the “hardened” 1st-order and “naive” 2nd-order implementation costs (in
clock cycles) and we observe that hardening the 1st-order Sbox is slower than
increasing the scheme’s order from 1 to 2 (both in the efficient and in the con-
servative case). Still, the solution requires no extra RNG and we maintain that
removing these effects can also be beneficial to higher-order implementations,
i.e. it is complimentary to masking. The extent to which higher-order implemen-
tations can benefit from removing such effects remains an open problem.

6 Conclusions

This work investigated the hazards in software masking, suggested a verification
tool and established a secure, 1st-order masked Sbox implementation against
1st-order, univariate attacks. Still, several important questions for future work
arise. We demonstrated that removing the ILA-breaching effects is feasible, yet
identifying the best clearing mechanism and minimizing the overhead is a topic
for further exploration. Similarly, the current work is limited to AVR ATMega163
and needs to be extended to different devices and platforms. It could be done
by using ASCOLD tool as a base for this kind of work. Moreover, higher-order
evaluation techniques are still nascent and in this work we did not focus on
1st-order, yet multivariate attacks such as those that exploit horizontality [4]. In
addition, note that the ILA effects are observable throughout an implementation.
Not only the cipher-related operations but any manipulation of shares during
I/O, RNG routines etc. can create hazards. Thus, there is need for effort towards
a fully hardened implementation. Last but not least, we stress that the effects
identified depend on the architecture and the physical layer, thus preventing
them in the assembly layer is, in principle, less efficient and prone to errors.
Future work can strive towards custom-made microcontrollers that enforce ILA
in hardware. Ideally, such a microcontroller should be able to guarantee ILA
without additional countermeasures such as threshold implementations [22].

Mind the Gap: Towards Secure 1st-order Masking in Software 15

References

1. Josep Balasch, Benedikt Gierlichs, Vincent Grosso, Oscar Reparaz, and François-
Xavier Standaert. On the cost of lazy engineering for masked software implemen-
tations. In Marc Joye and Amir Moradi, editors, Smart Card Research and Ad-
vanced Applications - 13th International Conference, CARDIS 2014, Paris, France,
November 5-7, 2014. Revised Selected Papers, volume 8968 of Lecture Notes in
Computer Science, pages 64–81. Springer, 2014.

2. Gilles Barthe, Sonia Beläıd, François Dupressoir, Pierre-Alain Fouque, Benjamin
Grégoire, and Pierre-Yves Strub. Verified proofs of higher-order masking. In Elis-
abeth Oswald and Marc Fischlin, editors, Advances in Cryptology - EUROCRYPT
2015 - 34th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Sofia, Bulgaria, April 26-30, 2015, Proceedings, Part I,
volume 9056 of Lecture Notes in Computer Science, pages 457–485. Springer, 2015.

3. Lejla Batina, Benedikt Gierlichs, Emmanuel Prouff, Matthieu Rivain, François-
Xavier Standaert, and Nicolas Veyrat-Charvillon. Mutual information analysis: a
comprehensive study. J. Cryptology, 24(2):269–291, 2011.

4. Alberto Battistello, Jean-Sébastien Coron, Emmanuel Prouff, and Rina Zeitoun.
Horizontal side-channel attacks and countermeasures on the ISW masking scheme.
In Benedikt Gierlichs and Axel Y. Poschmann, editors, Cryptographic Hardware
and Embedded Systems - CHES 2016 - 18th International Conference, Santa Bar-
bara, CA, USA, August 17-19, 2016, Proceedings, volume 9813 of Lecture Notes in
Computer Science, pages 23–39. Springer, 2016.

5. Eli Biham. A fast new DES implementation in software. In Eli Biham, editor, Fast
Software Encryption, 4th International Workshop, FSE ’97, Haifa, Israel, January
20-22, 1997, Proceedings, volume 1267 of Lecture Notes in Computer Science, pages
260–272. Springer, 1997.

6. Paul Bottinelli and Joppe W. Bos. Computational aspects of correlation power
analysis. IACR Cryptology ePrint Archive, 2015:260, 2015.

7. Eric Brier, Christophe Clavier, and Francis Olivier. Correlation power analysis with
a leakage model. In Marc Joye and Jean-Jacques Quisquater, editors, Cryptographic
Hardware and Embedded Systems - CHES 2004: 6th International Workshop Cam-
bridge, MA, USA, August 11-13, 2004. Proceedings, volume 3156 of Lecture Notes
in Computer Science, pages 16–29. Springer, 2004.

8. D. Canright and Lejla Batina. A very compact ”perfectly masked” s-box for AES
(corrected). IACR Cryptology ePrint Archive, 2009:11, 2009.

9. Suresh Chari, Charanjit S. Jutla, Josyula R. Rao, and Pankaj Rohatgi. Towards
sound approaches to counteract power-analysis attacks. In Wiener [34], pages 398–
412.

10. Jeremy Cooper, Elke DeMulder, Gilbert Goodwill, Joshua Jaffe, Gary Kenwor-
thy, and Pankaj Rohatgi. Test vector leakage assessment (TVLA) methodol-
ogy in practice, 2013. http://icmc-2013.org/wp/wp-content/uploads/2013/09/
goodwillkenworthtestvector.pdf.

11. Jean-Sébastien Coron. Higher order masking of look-up tables. In Phong Q.
Nguyen and Elisabeth Oswald, editors, Advances in Cryptology - EUROCRYPT
2014 - 33rd Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Copenhagen, Denmark, May 11-15, 2014. Proceedings,
volume 8441 of Lecture Notes in Computer Science, pages 441–458. Springer, 2014.

12. Jean-Sébastien Coron, Christophe Giraud, Emmanuel Prouff, Soline Renner,
Matthieu Rivain, and Praveen Kumar Vadnala. Conversion of security proofs from

16 Kostas Papagiannopoulos and Nikita Veshchikov

one leakage model to another: A new issue. In Werner Schindler and Sorin A. Huss,
editors, Constructive Side-Channel Analysis and Secure Design - Third Interna-
tional Workshop, COSADE 2012, Darmstadt, Germany, May 3-4, 2012. Proceed-
ings, volume 7275 of Lecture Notes in Computer Science, pages 69–81. Springer,
2012.

13. Joan Daemen, René Govaerts, and Joos Vandewalle. A new approach to block
cipher design. In Ross J. Anderson, editor, Fast Software Encryption, Cambridge
Security Workshop, Cambridge, UK, December 9-11, 1993, Proceedings, volume
809 of Lecture Notes in Computer Science, pages 18–32. Springer, 1993.

14. Wouter de Groot, Kostas Papagiannopoulos, Antonio de la Piedra, Erik Schneider,
and Lejla Batina. Bitsliced masking and ARM: friends or foes? - fifth international
workshop on lightweight cryptography for security and privacy. Lecture Notes in
Computer Science, Proccedings Pending, 2016.

15. Louis Goubin and Jacques Patarin. DES and differential power analysis
(the ”duplication” method). In Çetin Kaya Koç and Christof Paar, editors,
Cryptographic Hardware and Embedded Systems, First International Workshop,
CHES’99, Worcester, MA, USA, August 12-13, 1999, Proceedings, volume 1717 of
Lecture Notes in Computer Science, pages 158–172. Springer, 1999.

16. Dahmun Goudarzi and Matthieu Rivain. How fast can higher-order masking be
in software? Cryptology ePrint Archive, Report 2016/264, 2016. http://eprint.

iacr.org/2016/264.
17. Vincent Grosso, Gaëtan Leurent, François-Xavier Standaert, and Kerem Varici.

LS-designs: Bitslice encryption for efficient masked software implementations. In
Carlos Cid and Christian Rechberger, editors, Fast Software Encryption - 21st In-
ternational Workshop, FSE 2014, London, UK, March 3-5, 2014. Revised Selected
Papers, volume 8540 of Lecture Notes in Computer Science, pages 18–37. Springer,
2014.

18. Yuval Ishai, Amit Sahai, and David Wagner. Private circuits: Securing hardware
against probing attacks. In Dan Boneh, editor, Advances in Cryptology - CRYPTO
2003, 23rd Annual International Cryptology Conference, Santa Barbara, Califor-
nia, USA, August 17-21, 2003, Proceedings, volume 2729 of Lecture Notes in Com-
puter Science, pages 463–481. Springer, 2003.

19. Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis. In
Wiener [34], pages 388–397.

20. Stefan Mangard and Kai Schramm. Pinpointing the side-channel leakage of masked
AES hardware implementations. In Louis Goubin and Mitsuru Matsui, editors,
Cryptographic Hardware and Embedded Systems - CHES 2006, 8th International
Workshop, Yokohama, Japan, October 10-13, 2006, Proceedings, volume 4249 of
Lecture Notes in Computer Science, pages 76–90. Springer, 2006.

21. Thomas S. Messerges. Securing the AES finalists against power analysis attacks.
In Bruce Schneier, editor, Fast Software Encryption, 7th International Workshop,
FSE 2000, New York, NY, USA, April 10-12, 2000, Proceedings, volume 1978 of
Lecture Notes in Computer Science, pages 150–164. Springer, 2000.

22. Svetla Nikova, Christian Rechberger, and Vincent Rijmen. Threshold implemen-
tations against side-channel attacks and glitches. In Peng Ning, Sihan Qing, and
Ninghui Li, editors, Information and Communications Security, 8th International
Conference, ICICS 2006, Raleigh, NC, USA, December 4-7, 2006, Proceedings, vol-
ume 4307 of Lecture Notes in Computer Science, pages 529–545. Springer, 2006.

23. Emmanuel Prouff and Matthieu Rivain. Masking against side-channel attacks:
A formal security proof. In Thomas Johansson and Phong Q. Nguyen, editors,

Mind the Gap: Towards Secure 1st-order Masking in Software 17

Advances in Cryptology - EUROCRYPT 2013, 32nd Annual International Confer-
ence on the Theory and Applications of Cryptographic Techniques, Athens, Greece,
May 26-30, 2013. Proceedings, volume 7881 of Lecture Notes in Computer Science,
pages 142–159. Springer, 2013.

24. Mathieu Renauld, François-Xavier Standaert, Nicolas Veyrat-Charvillon, Dina
Kamel, and Denis Flandre. A formal study of power variability issues and side-
channel attacks for nanoscale devices. In Kenneth G. Paterson, editor, Advances in
Cryptology - EUROCRYPT 2011 - 30th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Tallinn, Estonia, May 15-
19, 2011. Proceedings, volume 6632 of Lecture Notes in Computer Science, pages
109–128. Springer, 2011.

25. Oscar Reparaz. Detecting flawed masking schemes with leakage detection tests. In
Thomas Peyrin, editor, Fast Software Encryption - 23rd International Conference,
FSE 2016, Bochum, Germany, March 20-23, 2016, Revised Selected Papers, volume
9783 of Lecture Notes in Computer Science, pages 204–222. Springer, 2016.

26. Matthieu Rivain and Emmanuel Prouff. Provably secure higher-order masking
of AES. In Stefan Mangard and François-Xavier Standaert, editors, Crypto-
graphic Hardware and Embedded Systems, CHES 2010, 12th International Work-
shop, Santa Barbara, CA, USA, August 17-20, 2010. Proceedings, volume 6225 of
Lecture Notes in Computer Science, pages 413–427. Springer, 2010.

27. Tobias Schneider and Amir Moradi. Leakage assessment methodology - A clear
roadmap for side-channel evaluations. In Tim Güneysu and Helena Handschuh,
editors, Cryptographic Hardware and Embedded Systems - CHES 2015 - 17th In-
ternational Workshop, Saint-Malo, France, September 13-16, 2015, Proceedings,
volume 9293 of Lecture Notes in Computer Science, pages 495–513. Springer, 2015.

28. François-Xavier Standaert, Tal Malkin, and Moti Yung. A unified framework for
the analysis of side-channel key recovery attacks. In Antoine Joux, editor, Advances
in Cryptology - EUROCRYPT 2009, 28th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Cologne, Germany, April
26-30, 2009. Proceedings, volume 5479 of Lecture Notes in Computer Science, pages
443–461. Springer, 2009.

29. Marc Stöttinger. Mutating runtime architectures as a countermeasure against
power analysis attacks. PhD thesis, Darmstadt University of Technology, Ger-
many, 2012.

30. Keccak team. Note on side-channel attacks and their countermeasures. http:

//keccak.noekeon.org/NoteSideChannelAttacks.pdf.
31. Nikita Veshchikov. SILK: high level of abstraction leakage simulator for side

channel analysis. In Mila Dalla Preda and Jeffrey Todd McDonald, editors,
Proceedings of the 4th Program Protection and Reverse Engineering Workshop,
PPREW@ACSAC 2014, New Orleans, LA, USA, December 9, 2014, pages 3:1–
3:11. ACM, 2014.

32. Junwei Wang, Praveen Kumar Vadnala, Johann Großschädl, and Qiuliang Xu.
Higher-order masking in practice: A vector implementation of masked AES for
ARM NEON. In Kaisa Nyberg, editor, Topics in Cryptology - CT-RSA 2015,
The Cryptographer’s Track at the RSA Conference 2015, San Francisco, CA, USA,
April 20-24, 2015. Proceedings, volume 9048 of Lecture Notes in Computer Science,
pages 181–198. Springer, 2015.

33. Carolyn Whitnall, Elisabeth Oswald, and Luke Mather. An exploration of the
Kolmogorov-Smirnov test as a competitor to mutual information analysis. In Em-
manuel Prouff, editor, Smart Card Research and Advanced Applications - 10th

18 Kostas Papagiannopoulos and Nikita Veshchikov

IFIP WG 8.8/11.2 International Conference, CARDIS 2011, Leuven, Belgium,
September 14-16, 2011, Revised Selected Papers, volume 7079 of Lecture Notes in
Computer Science, pages 234–251. Springer, 2011.

34. Michael J. Wiener, editor. Advances in Cryptology - CRYPTO ’99, 19th Annual
International Cryptology Conference, Santa Barbara, California, USA, August 15-
19, 1999, Proceedings, volume 1666 of Lecture Notes in Computer Science. Springer,
1999.

35. Wentao Zhang, Zhenzhen Bao, Dongdai Lin, Vincent Rijmen, Bohan Yang, and
Ingrid Verbauwhede. RECTANGLE: a bit-slice lightweight block cipher suitable
for multiple platforms. SCIENCE CHINA Information Sciences, 58(12):1–15, 2015.

Mind the Gap: Towards Secure 1st-order Masking in Software 19

7 Appendix

Below, we include the 32x32 matrix R that is generated experimentally, while
investigating all possible neighbouring leakage effects in the ATMega163 register
file (by performing 32 experiments similar to Listing 1.5). Value ‘1’ denotes the
presence of leakage and ‘0’ the absence. The tool ASCOLD uses R in order to
detect neighbour-based ILA violations.

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
00 1
01 1
02 0 0 1 1 0
03 0 0 1 1 0
04 0 0 0 0 1 1 0
05 0 0 0 0 1 1 0
06 0 0 0 0 0 0 1 1 0
07 0 0 0 0 0 0 1 1 0
08 0 0 0 0 0 0 0 0 1 1 0
09 0 0 0 0 0 0 0 0 1 1 0
10 0 0 0 0 0 0 0 0 0 0 1 1 0
11 0 0 0 0 0 0 0 0 0 0 1 1 0
12 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
13 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
20 1 1 0 0 0 0 0 0 0 0 0 0
21 0 1 1 0 0 0 0 0 0 0 0 0 0
22 0 1 1 0 0 0 0 0 0 0 0
23 0 1 1 0 0 0 0 0 0 0 0
24 0 1 1 0 0 0 0 0 0
25 0 1 1 0 0 0 0 0 0
26 0 1 1 0 0 0 0
27 0 1 1 0 0 0 0
28 0 1 1 0 0
29 0 1 1 0 0
30 1 1
31 0 1 1

