
Location-Based Leakages:
New Directions in Modeling and Exploiting

Christos Andrikos
and Giorgos Rassias

National Technical University of Athens
Email: candrikos@cslab.ece.ntua.gr
Email: grassias@cslab.ece.ntua.gr

Liran Lerman
Université libre de Bruxelles

Email: llerman@ulb.ac.be

Kostas Papagiannopoulos
and Lejla Batina

Radboud University Nijmegen
Email: kostaspap88@gmail.com

Email: lejla@cs.ru.nl

Abstract—Near-field microprobes have the capability to iso-

late small regions of a chip surface and enable measurements

with high spatial resolution. The capability of distinguishing

such small regions gives rise to the location-based side-channel

attacks, which exploit the spatial dependencies of cryptographic

algorithms in order to recover the secret key. This work discusses

our preliminary results and research in the field of location-

based leakages and consists of three parts. First, we provide a

simple spatial model that partially captures the effect of location-

based leakages. Second, we perform the first successful location-

based attack on the SRAM of a modern ARM Cortex-M4, using

standard techniques such as difference of means and multivariate

templates. Third, we expand towards the application of convo-

lutional neural networks as classifiers that can distinguish small

regions of SRAM.

I. INTRODUCTION

Side-channel analysis (SCA) allows adversaries to recover
sensitive data, by observing and analyzing the physical char-
acteristics and emanations of a cryptographic implementa-
tion [1]. Usually, the physical observables allow the adver-
sary to infer key-dependent intermediate values of a cipher,
by using the well-established Hamming weight or distance
models. A less common form of side-channel leakage that
arises in many practical scenarios is location-based leakage.
Such leakage stems from the fact that different e.g. registers,
memory regions, buses or other chip components exhibit
identifiable leakage when accessed or manipulated. If there
exists any dependence between the secret key and the activated
component, then a side-channel adversary can exploit it to his
advantage.

The works of Sugawara et al. [2] demonstrate the presence
of such address dependencies in an ASIC scenario. Likewise,
the works of Heyszl et al. [3] and Sprecht et al. [4] have
exploited similar spatial dependencies on a decapsulated
FPGA using near-field microprobes. The location-based
leakage can be useful in a plethora of scenarios, enabling us
to distinguish either small or large components. For instance,
finding which ECC register is used by public-key algorithms
such as double-and-always-add can result in direct key
recovery [3]. Similarly, recovering the exact address accessed
during the AES Sbox lookup can reveal the key, i.e. even
photonic emission analysis [5] can be considered as a sub-case
of location-based leakage exploitation. Last, side-channel

countermeasures such as RSM [6] rely on rotating lookup
tables to mask the data. Identifying which lookup table is
currently under use can simplify the side-channel analysis.
For the sake of clarity, we need to distinguish between
location-based leakage and localized leakage. Location-based
leakage arises when the location of a component is assisting
towards key recovery. On the contrary, we observe localized
EM leakage when an intermediate value of the algorithm
leaks in a specific chip region while depending on the
input and key. For example, exploiting the exact address
of an Sbox lookup implies location-based leakage, whereas
attacking the Sbox output on a specific chip region implies
localized leakage. Localized EM leakage is conceptually
similar to power leakage and its potential upside is the fact
that localization can improve the signal-to-noise ratio, as seen
e.g. in the work of Unterstein et al. [7].

Contribution. This work presents several preliminary
results in the field on location-based leakage modeling and
exploitation. Analytically, we provide a simple spatial model
that partially captures the effect of location-based leakages. In
addition, we perform the first successful location-based attack
on the SRAM of a modern ARM Cortex-M4, using difference
of means, as well as multivariate templates. Last, we apply
convolutional neural networks as classifiers in order to
distinguish small regions of the SRAM. Section II describes
the experimental setup and performs a simple analysis.
Section III puts forward the spatial model and identifies
future directions in the context of MI-based analysis. Sections
IV and V discuss preliminary results with template attacks
and convolutional neural networks respectively. We conclude
in Section VI.
Notation. Throughout the text, capital letters denote random
variables and small case letter denote instances of random
variables or constant values. Notation Uniform({a, b}),
Bernoulli(p), Binomial(n, p) and N (µ,�2) denote random
variables with uniform, Bernoulli, binomial and normal
probability distributions respectively. Parameter p denotes the
probability of Bernoulli/binomial trials and µ,�2 denote the
mean and variance of the normal distribution. The set {a, b}
denotes that the uniform distribution can receive value a or b
equiprobably.

978-1-5386-3437-0/17/$31.00 ©2017 IEEE978-1-5386-3437-0/17/$31.00 ©2017 IEEE 246

Fig. 1. The decapsulated surface of the device-under-test.

II. EXPERIMENTAL SETUP & T-TEST ANALYSIS

The main goal of our experimental evaluation is to exam-
ine whether it is possible to detect the access to different
SRAM regions in a modern ARM-based device, i.e. examine
its susceptibility to location-based attacks. Our measurement
setup consists of a decapsulated Pinata device1, using an
ARM Cortex-M4 processor. The decapsulated chip surface
(roughly 6 mm2) is scanned using an ICR HH 100-27 Langer
microprobe2 with diameter of 100 µm. The scan is performed
on a rectangular grid of dimension 300, resulting in 300
⇥ 300 measurement spots. The near-field probe is moved
over the surface with the assistance of an XYZ-table with
positioning accuracy of 50 µm. At every position of the scan
grid, a single measurement was performed, using sampling
rate of 1 Gsample/sec and resulting in 170k samples. Due
to the complex and non-homogeneous nature of a modern
chip, several type of EM emissions are present on the surface,
most of which are unrelated to the SRAM location. In this
particular case study, the signals of interest had amplitude of
roughly 70mV, so we have set the oscilloscope voltage range
accordingly. In addition, several device peripherals (such as
USB communication) have been disabled in order to reduce
interference. The decapsulated surface where the scan is
performed is visible in Figure 1.

In order to produce location-dependent leakage, we perform
sequential accesses to a continuous region of 16KBytes in
the SRAM by storing the same value to all positions. The
word size of this ARM architecture is 32 bits, i.e. we have
accessed to 4096 words in memory. We opted to access the
SRAM using ARM assembly instead of a high-level language
in order to avoid compiler-induced pitfalls such as code
optimizations and removal of redundant code.

1https://tinyurl.com/lduhaaq
2https://tinyurl.com/mcd3ntp

Fig. 2. Distinguishing two 8KByte regions of the SRAM. Yellow region
indicates stronger leakage from class 1 and blue region indicates stronger
leakage from class 2. The differences below the significance threshold value
(4.5) are excluded from the graph.

Preliminary Results. The initial scan measurements
were analyzed using a simple difference-of-means test. To
demonstrate the presence of location-based leakage, we
partitioned every trace (170k samples) to two classes. The
first class contains SRAM accesses from the beginning
of the memory until word no. 2047 and the second class
contains SRAM accesses from word 2048 until word 4096.
For every grid position, we averaged the samples of class 1
and class 2 producing t̄1 and t̄2 respectively and computed
the difference t̄1 � t̄2. Continuing, we performed a Welch
t-test with significance level of 0.1% in order to determine
if location-based leakage is present. The results are visible
in Figure 2, which is focusing in a specific sub-region of the
chip surface that exhibits high difference.
In Figure 2 we can observe that location dependencies do
exist and can even be distinguished by visual inspection.
In addition, we observe that the location dependencies
demonstrate strong spatial features. That is we can see two
regions at close proximity (yellow region and blue region)
where the yellow region shows positive difference between
class 1 and 2, while the blue region shows negative difference
between class 1 and 2.

III. A SPATIAL MODEL FOR LOCATION LEAKAGES

The prevalence of leakage in intermediate values of cryp-
tographic implementations has led to concentrated efforts
towards its modeling. Side-channel research has proposed
a multitude of models, starting from the independent noise
model [8], which expresses the leakage as the sum of a
deterministic part (data) and a random part (noise). In the
same direction, modeling has attempted to analyze the noise
source, distinguishing between algorithmic and electrical [9],
[10], while measuring its effectiveness as a countermeasure.
Custom models can also capture certain leakage features that
are often ignored. For instance, multivariate models [11], [12]

247

are capable of pinpointing joint leakage effects, in order to en-
hance the exploitation phase. Similarly, models can encompass
electrical & electronic effects directly, managing to bypass
protection mechanisms [13].

Unlike the well-established data-dependent models, its
location-based counterpart remains less explored. The main
reason is the semi-invasive nature of location attacks (often re-
quiring chemical decapsulation) and the lengthy measurement
procedures involved. Still, we maintain that such attacks are in-
creasingly relevant due to the fairly small cost, the widespread
protection against data-dependent leakages [14], [15], as well
as the increasing complexity of electronic circuitry that makes
power-oriented attacks harder [16].

Thus, this section puts forward a theoretical model that
describes the location leakages observed on a chip surface
that are caused by the switching activity of circuit regions.
The model can be viewed as the extension of the independent
noise model to the spatial domain and is based on the
following definitions and assumptions.

Definition. We define a location-oriented side-channel
experiment E as the parameter tuple E(s, r, g, c,v). Much
like the previous section, the experiment consists of a probe
scan over the chip surface in order to distinguish between
different regions. The parameter s denotes the area of the
chip surface on which we perform measurements (e.g. the
whole chip die) and parameter r denotes the area of the
measuring probe that we use in our experiments. Typically,
we require r to be smaller than s in order to be able to
isolate different components (e.g. SRAM regions) on the
surface. Continuing, parameter g denotes the measurement
grid dimensions, i.e. it specifies the measurement resolution
of a uniform rectangular array of antennas [17]. Finally, the
vector parameters c,v contain the information about the
surface components that we try to distinguish. Analytically,
if we want to distinguish between n

c

components on the chip
surface, c = [c1, c2, . . . , cnc], where c

i

= 1 if component i
is active at this time and c

i

= 0 if it is inactive. In addition,
we need to specify v = [(p1, a1), (p2, a2), . . . , (pnc , anc)].
The vector p

i

denotes the position of component i on
the chip surface and the parameter a

i

denotes its area.
For simplicity, we assume the geometry of the surface,
probe and components to be square, yet we note that the
model can be extended to different geometrical shapes in a
straightforward manner. Note also that in our attack scenario,
only one out of n

c

components is active at a given point in
time, thus the system constitutes of n

c

possible states. We
define state S = s

i

, 8i = 1, . . . , n
c

as the following tuple:
s
i

⌘ [c
i

= 1, c
j

= 0 8j 6= i].
Experiment E(25, 2.9, 2, [([0.6, 1.5], 0.8), ([1.6, 4.1], 2.8)])

is visible in Figure 3, where all parameters are assumed to
be in generic units u and square units u2 accordingly. The
surface s, probe r, areas a1 and a2 are respectively 25, 2.9,
0.8 and 2.8 u2. The position of components c1 and c2 is
[0.6, 1.5] and [1.6, 4.1] respectively. The dimension g of the
grid is 2, resulting in a 2⇥ 2 scan grid. The system has only

two possible states, namely state s1 = [c1 =‘on’, c2 =‘off’]
and state s2 = [c2 = ‘on’, c1 = ‘off’].

c1

d2d02

c2

p1

[0,0]

[0,5]

[5,0]

surface s

•

•

•

•

•
p2

⇥

⇥

⇥

⇥

Fig. 3. Sample experiment E . Dashed-lines denote the probe area r. Points
p1,p2 show the position of components c1, c2, whose area is highlighted by
green. The ⇥ spots show the measurement points of the scan grid.

Assumption 1: Independent Noise. For a given experiment
E , the leakage L

x,y

at any specified measurement position
[x, y] in the grid consists of a deterministic part ldet

x,y

, an
algorithmic noise part Nalgo and an electrical noise part Nel,
thus:

L
x,y

= ldet
x,y

+Nalgo +Nel (1)

Assumption 2: Deterministic Leakage. The deterministic
part of the leakage ldet

x,y

at position [x, y] is caused by the
activation (switching behavior) of any component c

i

that is
captured by the probe at this grid position. Thus, it depends
directly on the current state S. We assume the deterministic
leakage to be proportional to the area of the active component
located underneath the probe surface. In the following analysis
we use the identity leakage function w.r.t. the component area.

ldet
x,y

|s
i

=

8
><

>:

0, if c
i

is not captured at [x,y]
d
i

, 0 < d
i

< a
i

if c
i

is partially captured at [x,y]
a
i

if c
i

is fully captured at [x,y]
(2)

Figure 3 demonstrates a component c1 that is fully captured
by the probe, i.e. ldet|s1 = c1 on the bottom-left grid spot (⇥)
and zero on all other grid spots. On the contrary, component
c2 is partially captured. Thus, ldet|s2 = d2 on the top-left
grid spot (yellow area), ldet|s2 = d02 on the top-right grid-spot
(blue area) and zero elsewhere.

Assumption 2 is motivated by the results obtained in our
ARM-based experimental setup (Figure 2) as well as the
results of the FPGA-based setups of Heyszl et al. [3] and
Sprecht et al. [4]. In several scenarios, the experimental
results demonstrate strong spatial features, which tend to
be proportional to the component size. Still, we note that
the model has several practical limitations. The switching

248

activity in the regions may not be the only source of location
leakage, e.g. different regions could also be identified from
address-dependent parts of the circuit. Units like the ALU,
multiplexers and memory buses often store and manipulate
addresses directly, generating data-dependent leakage, where
the secret data is the address being accessed. As a result,
the exact nature and cause of location-based leakage remains
open to investigation.

Assumption 3: Algorithmic & Electrical Noise. We
employ the common assumption that the electrical noise Nel

follows a normal distribution with zero mean and variance
�2
el

, i.e. Nel ⇠ N (0,�2
el

). The variance �2
el

is related to the
specific device-under-test and measurement apparatus that we
use (probe, oscilloscope, amplifier etc.).

The algorithmic noise in our model is caused by compo-
nents that, like components c

i

, leak underneath the probe in
measurement spot on the scan grid. However, unlike com-
ponents c

i

, they exhibit uniformly random switching activity
(equiprobable ‘on’ and ‘off’) that is independent of the state
S. If n

a

such components, each with area b
i

, i = 1, . . . , n
a

,
are located under the probe, then we assume their leakage to
be again proportional to the captured area b

i

. The leakage
of these independent, noise-generating component is denoted
by L

i

, i = 1, . . . n
a

. Thus, Nalgo constitutes of the following
sum, using again the identity leakage function.

Nalgo =
naX

i=1

L
i

, where L
i

⇠ Uniform({0, b
i

}) (3)

The algorithmic noise is highly dependent on the device-under-
test, i.e. we could potentially encounter cases where there
is little or no random switching activity around the critical
(targeted) components c

i

, or we may face tightly packed
implementations that induce such noise. Note that the larger
the probe area r, the more likely we are to introduce such
components.

Since countermeasure designers opt often for algorithmic
noise countermeasures, we investigate Nalgo for a tightly
packed circuit that contains a large number of randomly
switching components in order to hide the activated compo-
nent. We assume every noise-generating component to have
area b ' d, where d is the area of the activated component
Note that since we assume large n

a

, both the noise-generating
components as well as the critical component are small w.r.t.
the probe size, i.e. d ⌧ r. In a tightly packed circuit,
n
a

' r/d, i.e. the probe area r contains roughly r/d randomly
switching components. The following formula approximates
Nalgo for the particular case we described.

Nalgo =
naX

i=1

L
i

= d ·
naX

i=1

B
i

= d ·A, where

B
i

⇠ Bernoulli(0.5) and A ⇠ Binomial(n
a

, 0.5)

Thus , Nalgo

Central Limit�������!
Theorem

N (d · n
a

/2, d · n
a

/4)

(4)

It holds that V ar[Nalgo] = d · n
a

/4 = r/4. Thus, for
the tightly-packed, small-component scenario we have
established a direct link between the probe area r and the
level of algorithmic noise, demonstrating how increasing the
probe area enhances the algorithmic noise.

Concluding the model discussion, we note that an adversary
performing experiment E for all possible states s1, . . . snc ,
can generate a multidimensional leakage vector L|s

i

8i = 1, . . . , n
c

. Subsequently, he can use this g2-dimensional
vectors in order to distinguish between the different states.

Future Directions: Having established a spatial model
for location leakage, we aim to proceed towards the
theoretical evaluation of the security level. Specifically, we
aim to analyze the location-based leakages via the mutual
information metric, suggested by Standaert et al. [10] i.e., to
evaluate the leakage in the worst-case adversarial scenario.
The MI metric can be computed using the following formula.

MI(S;L) = H[S] +
X

s2S
Pr[s] ·

Z

l2Lg2

Pr[l|s] · log2Pr[s|l] dl

where Pr[s|l] = Pr[l|s]P
s

⇤2S Pr[l|s⇤] (5)

We aim to examine the effects of all the parameters involved
in the location-oriented side-channel experiment E under the
MI framework in order to pinpoint potential countermeasures
that can hinder the adversary.

IV. TEMPLATE ATTACKS

Moving towards exploitation, a common analysis option in
the field of side-channel analysis is the template attack [18].
The adversary models a priori the leakage (template con-
struction) in a controlled device by estimating the param-
eters of a multivariate normal distribution. Continuing, the
adversary attacks a target device, trying to identify the secret
key/state/region via the maximum likelihood approach (tem-
plate matching).

In the case study on the SRAM of ARM Cortex-M4, the
template attacks focus on identifying which region of the
SRAM is being accessed. The leakage vector is L|s

i

and
its dimensionality is usually large even for modest values
of the grid dimension g. Thus, we employ dimensionality
reduction techniques (based on the correlation heuristic) so
as to detect points of interest (POIs) in the 300 ⇥ 300 grid
(space) and in the 170k samples (time), aiming to train the
statistical model effectively and efficiently. In addition, when
performing template matching, we combine several leakage
measurements from the test set together, in order to reduce
the noise and improve our detection capabilities3. Last, we
note that template attacks are particularly demanding w.r.t.
computational resources, particularly when they involve

3Whether this constitutes an option depends on the situation. If any sort of
randomization such as masking or re-keying is present in the device then the
adversary is limited in the number of test traces that he can combine.

249

5 10 15

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number of partitions

er
ro

r r
at

e

●

●

●

●
●

●

●

● ● ●

● ● ●
●

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

●random model template attacks

Fig. 4. The error rate of the template-based classifier as we increase the
number of components nc and decrease their area ai.

high-dimensional distributions. To tackle this computational
problem, we opt for the improved template formulas proposed
by Choudary et al. [19] that assume a pooled covariance
matrix.

Preliminary Results. In detail, we gradually partition
the 16kBytes of SRAM into classes, built the corresponding
template for each class and perform matching. Initially the
SRAM is partitioned in two regions, i.e. we attempt to
distinguish the initial 8KByte region against the following
8 KByte region (as seen in Section II). The analysis
continues in the same fashion, partitioning the SRAM into
gradually smaller regions (3,4,. . . ,15), i.e. we examine the
distinguishing capability of the adversary, as the number
of components n

c

increases and their respective areas a
i

decrease. This preliminary template analysis demonstrates
how the error rate of our classification interacts with these
two parameters of E . The preliminary results are visible in
Figure 4, showing that 15 regions of roughly 1KBytes in size
remain sufficiently distinguishable with error rate of 20%.
Figure 5 showcases how the number of POIs affects the error
rate of a certain class.

Future Directions. What we are particularly interested in is
the behavior (error rate) of the template-based classification
as the problem becomes increasingly harder. For instance, we
aim to apply templating in order to e.g. find how small do
the memory regions need to be for the distinguisher to fail.
Likewise, we aim to answer similar questions w.r.t. the grid,
whose dimension g constitutes a particularly limiting factor
during the trace acquisition procedure. Finally, we want to
discover if SRAM regions that are positioned closely together
are harder to distinguish, i.e. whether we can identify a
countermeasure relying on physical proximity.

●●●
●●●
●●●
●

●

●

●

●

●

●

●

●

●

●●●
●●●
●●●
●

●

●

●

●

●

●

●

●

●

●●●
●●●
●●●
●

●

●

●

●

●

●

●

●

●

●●●
●●●
●●●
●

●

●

●

●

●

●

●

●

●

●●●
●●●
●●●
●

●

●

●

●

●

●

●

●

●

●●●
●●●
●●●
●

●

●

●

●

●

●

●

●

●

●●●
●●●
●●●
●

●

●

●

●

●

●

●

●

●

●●●
●●●
●●●
●

●

●

●

●

●

●

●

●

●

●●●
●●●
●●●
●

●

●

●

●

●

●

●

●

●

●●●
●●●
●●●
●

●

●

●

●

●

●

●

●

●

●●●
●●●
●●●
●

●

●

●

●

●

●

●

●

●

●●●
●●●
●●●
●

●

●

●

●

●

●

●

●

●

●●●
●●●
●●●
●

●

●

●

●

●

●

●

●

●

●●●
●●●
●●●
●

●

●

●

●

●

●

●

●

●

●●●
●●●
●●●
●

●

●

●

●

●

●

●

●

●

●●●
●●●
●●●
●

●

●

●

●

●

●

●

●

●

●●●
●●●
●●●
●

●

●

●

●

●

●

●

●

●

●●●
●●●
●●●
●

●

●

●

●

●

●

●

●

●

●●●
●●●
●●●
●

●

●

●

●

●

●

●

●

●

0

250

500

750

1000

0 25 50 75 100
of time instants

of

 p
os

iti
on

s

0.00

0.25

0.50

0.75

1.00
Error rate

Fig. 5. The error rate of the template-based classifier as a function of the
number of POIs selected in the spatial and the temporal domain.

V. NEURAL NETWORK ANALYSIS

Despite the fact that the multivariate normal leakage as-
sumption is fairly realistic in the side channel context, applying
distribution-agnostic techniques appears to be another rational
approach. Over past few years, there has been a resurgence
of interest in Deep Learning techniques, powered by rapid
hardware evolvement. In this context, we also employ a deep
learning approach to reveal the secret state S by invoking
a convolutional neural network (CNN). Originally aimed to
incarnate computer vision, CNNs perform well on tasks that
exploit potential spatial correlation on raw input data, i.e. ele-
ments (such as measurement regions) that are closer together
are more closely related than distant ones. In this manner we
designed and implemented a CNN to tackle the problem of
classifying the “images” resulting from the ARM Cortex-M4
experiment.

CNNs are defined as a mathematical workflow composed of
some random combination of (1) convolutional, (2) nonlinear,
(3) pooling (downsampling), and (4) fully connected layers.
The key difference between CNNs and typical deep forward
networks is that in CNNs, dimensionality reduction is an
immediate result of the training process. Considering two or
more inputs of high dimensionality, CNNs can excel in the task
of classification as they are able to learn the voting weights
of the fully connected layers, as well as the features (filters)
on the convolutional ones through Back Propagation.

Figure 6 depicts the 4 basic layers the CNN that we applied
in our case study of SRAM on ARM Cortex-M4:

1) Convolutional layers: during the forward phase input
data are convoluted with some filters (features) to pro-
duce feature maps depicting where the features are actu-
ally located. During the backward phase, filter weights
are readjusted (learned) in a manner of minimizing a
loss function.

250

Fig. 6. CNN architecture.

2) Pooling layers: the feature maps are downsized to reduce
computational complexity and increase model robust-
ness

3) Nonlinear layers: Nonlinear functions are invoked to
provide normalization. Thus scores generated by previ-
ous layers are converted to a probability distribution over
the classes or are considered zero if they are negative.

4) Fully connected layers: usually the final layers of the
entire stack; a classic multi-layer perceptron that imple-
ments a voting schema during the forward phase, while
during the backward phase the weights are readjusted
(learned) by minimizing a loss function.

As mentioned, the location-oriented experiment E generated
170k measurements of the magnetic field of each of the
300 ⇥ 300 points on the chip. We consider this equivalent
to generating 170k images of size of 300 ⇥ 300 pixels,
similar to the ones resulting from Magnetic Resonance
Imaging. Thus, our intuition leads us to define a contextual
image classification problem focusing on the relationship
of the nearby pixels (neighborhood). Given the extensive
effort required to train the CNN, we decided to attempt
distinguishing small SRAM regions. We partitioned the trace
in two consecutive regions (class 1 and class 2) of 1000
images each, i.e. every class roughly corresponds to the
activation of 100 bytes of the SRAM.

Preliminary Results. The CNN that was tested follows
the architectural principles depicted on Figure 6 and aims
to infer the active component on the chip. The first two
layers of the proposed architecture are convolutional. In this
manner, input is filtered twice to produce some more abstract
feature maps. Considering the physical size of the probe
relatively to the area of the active SRAM components, we
ended up utilizing 5x5 filters for the first and 7x7 for the
second convolutional layer. The resulting 64 feature maps
are then fed to a non-linear layer consisting of Rectifiers.
The latter normalizes the feature maps to prevent numerical
computations resulting in inappropriate states, such as
overflow or underflow, that can affect the overall computing.
The normalized feature maps are then fed to a max pooling
layer to be downsized to one fourth of each dimension in
favor of computing efficiency. Finally the output of max
pooling layer is forwarded to a fully connected multilayer
perceptron (MLP) composed of one input, one output and
a single hidden layer. Our model was implemented and
trained on Tensorflow, an open sourced library with improved
computational capabilities introduced by Google. The training

dataset was divided in two classes and the training samples
were chosen evenly from each class in a random way
(uniform distribution).

Using the CNN-based classifier, we conclude that the
introduced model performs the classification task by scoring
91.3% in distinguishing between 2 regions of 100 bytes.

Future Directions The CNN model is not completely
tested for its capacity or for any overfitting/undefitting effects
and increasing the parameter n

c

results in higher error
rates. Our future direction will focus on fully harnessing
the potential of CNNs in the context of location-based
leakages and performing a direct comparison between
CNNs and template attacks. Last, we also aim to tackle the
computationally intensive training that is required by CNNs
by employing parallel GPU computations.

VI. CONCLUSION

The current work takes the first steps towards the in-
depth modeling and exploitation of location-based leakages.
We have demonstrated preliminary work showing how such
effects are exploitable by the adversary via template attacks
and convolutional neural networks. This ongoing research will
continue by analyzing all relevant experimental parameters
of location-oriented side-channel experiments under the MI
framework, as well as using real-world case studies. Our long-
term goal is to solidify the exploitation techniques, study their
interaction with the experimental parameters and finally, move
towards the direction of countermeasures against location-
based attacks.

ACKNOWLEDGMENT

Removed for submission.

REFERENCES

[1] P. C. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,” in
Advances in Cryptology - CRYPTO ’99, 19th Annual International
Cryptology Conference, Santa Barbara, California, USA, August 15-19,
1999, Proceedings, 1999, pp. 388–397.

[2] T. Sugawara, D. Suzuki, M. Saeki, M. Shiozaki, and T. Fujino, “On
measurable side-channel leaks inside ASIC design primitives,” J. Cryp-
tographic Engineering, vol. 4, no. 1, pp. 59–73, 2014.

[3] J. Heyszl, S. Mangard, B. Heinz, F. Stumpf, and G. Sigl, “Localized
electromagnetic analysis of cryptographic implementations,” in Topics
in Cryptology - CT-RSA 2012 - The Cryptographers’ Track at the RSA
Conference 2012, San Francisco, CA, USA, February 27 - March 2,
2012. Proceedings, 2012, pp. 231–244.

[4] R. Specht, J. Heyszl, and G. Sigl, “Investigating measurement methods
for high-resolution electromagnetic field side-channel analysis,” in 2014
International Symposium on Integrated Circuits (ISIC), Singapore,
December 10-12, 2014, 2014, pp. 21–24. [Online]. Available:
http://dx.doi.org/10.1109/ISICIR.2014.7029532

[5] A. Schlösser, D. Nedospasov, J. Krämer, S. Orlic, and J.-P. Seifert,
Simple Photonic Emission Analysis of AES. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2012, pp. 41–57.

[6] M. Nassar, Y. Souissi, S. Guilley, and J. L. Danger, “Rsm: A small and
fast countermeasure for aes, secure against 1st and 2nd-order zero-offset
scas,” in 2012 Design, Automation Test in Europe Conference Exhibition
(DATE), March 2012, pp. 1173–1178.

[7] F. Unterstein, J. Heyszl, F. D. Santis, and R. Specht, “Dissecting leakage
resilient prfs with multivariate localized EM attacks - A practical security
evaluation on FPGA,” COSADE, vol. 2017, p. 272, 2017.

251

[8] J. Doget, E. Prouff, M. Rivain, and F. Standaert, “Univariate
side channel attacks and leakage modeling,” J. Cryptographic
Engineering, vol. 1, no. 2, pp. 123–144, 2011. [Online]. Available:
http://dx.doi.org/10.1007/s13389-011-0010-2

[9] G. Bertoni, J. Daemen, N. Debande, T. H. Le, M. Peeters, and G. V. Ass-
che, “Power analysis of hardware implementations protected with secret
sharing,” in 2012 45th Annual IEEE/ACM International Symposium on
Microarchitecture Workshops, Dec 2012, pp. 9–16.

[10] F. Standaert, T. Malkin, and M. Yung, “A unified framework for
the analysis of side-channel key recovery attacks,” in Advances in
Cryptology - EUROCRYPT 2009, 28th Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Cologne,
Germany, April 26-30, 2009. Proceedings, 2009, pp. 443–461.

[11] S. Chari, J. R. Rao, and P. Rohatgi, “Template attacks,” in Cryptographic
Hardware and Embedded Systems - CHES 2002, 4th International
Workshop, Redwood Shores, CA, USA, August 13-15, 2002, Revised
Papers, 2002, pp. 13–28.

[12] W. Schindler, K. Lemke, and C. Paar, “A stochastic model for differential
side channel cryptanalysis,” in Cryptographic Hardware and Embedded
Systems - CHES 2005, 7th International Workshop, Edinburgh, UK,
August 29 - September 1, 2005, Proceedings, 2005, pp. 30–46.

[13] E. Peeters, F. Standaert, and J. Quisquater, “Power and electromagnetic
analysis: Improved model, consequences and comparisons,” Integration,
vol. 40, no. 1, pp. 52–60, 2007.

[14] S. Nikova, C. Rechberger, and V. Rijmen, “Threshold implementations
against side-channel attacks and glitches,” in Information and Commu-
nications Security, 8th International Conference, ICICS 2006, Raleigh,
NC, USA, December 4-7, 2006, Proceedings, 2006, pp. 529–545.

[15] M. Rivain and E. Prouff, “Provably secure higher-order masking of
AES,” in Cryptographic Hardware and Embedded Systems, CHES 2010,
12th International Workshop, Santa Barbara, CA, USA, August 17-20,
2010. Proceedings, 2010, pp. 413–427.

[16] P. Maurine.
[17] H. L. Van Trees, Detection, Estimation, and Modulation Theory: Part

IV: Optimum Array Processing. John Wiley and Sons, Inc., 2002.
[18] S. Chari, J. R. Rao, and P. Rohatgi, Template Attacks. Berlin,

Heidelberg: Springer Berlin Heidelberg, 2003, pp. 13–28.
[19] O. Choudary and M. G. Kuhn, “Efficient template attacks,” in

Smart Card Research and Advanced Applications - 12th International
Conference, CARDIS 2013, Berlin, Germany, November 27-29, 2013.
Revised Selected Papers, 2013, pp. 253–270. [Online]. Available:
http://dx.doi.org/10.1007/978-3-319-08302-5 17

252

