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Abstract. Fault injection attacks alter the intended behavior of micro-
controllers, compromising their security. These attacks can be mitigated
using software countermeasures. A widely-used software-based solution
to deflect fault attacks is instruction duplication and n-plication. We ex-
plore two main limitations with these approaches: first, we examine the
effect of instruction duplication under fault attacks, demonstrating that
as fault tolerance mechanism, code duplication does not provide a strong
protection in practice. Second, we show that instruction duplication in-
creases side-channel leakage of sensitive code regions using a multivariate
exploitation technique both in theory and in practice.

1 Introduction

Fault Injection (FI) and Side-Channel Analysis (SCA) attacks are a risk for mi-
crocontrollers operating in a hostile environment where attackers have physical
access to the target. These attacks can break cryptographic algorithms and re-
cover secrets either by e.g changing the control flow of the program (FI) or by
monitoring the device’s power consumption (SCA) with little or no evidence.

Multiple countermeasures such as random delays [12], masking [42], infec-
tion [25], data redundancy checks [33, 35] and instruction redundancy [6] have
been proposed to tackle these threats, yet their impact, effectiveness and po-
tential interactions remain open for investigation. Such countermeasures can be
implemented at hardware or at software level, often translating to overheads
in silicon area and execution runtime. This exacerbates the need for a detailed
analysis of the benefits introduced by these countermeasures before their actual
deployment.

1.1 Motivation

In this work, we focus on the Instruction Duplication (ID) countermeasure, ap-
plied as a fault tolerance mechanism in software. The assembly-level redundancy
introduced by ID can prevent attacks aiming to skip instructions and alter the
control flow. Recent defenses (e.g., infection [19]) build further on code redun-
dancy in order to provide a stronger protection.



Manually applying these defenses, however, does not scale well for a large
code base that needs to be protected: it is an error-prone process and it costs
many highly skilled man-hours, therefore, in practice, it is often automated using
compiler techniques [8, 37, 32]. On top of protecting against fault attacks, com-
pilers can also provide support to reduce the information leakage through side
channels [4, 34, 39, 10, 9]. While there is previous work exploring the effect of
one defense mechanism on another [41, 30, 5], to the best of our knowledge, the
effect of ID on side-channel leakage has not been explored before. We perform
an in-depth investigation of ID, focusing on its applicability against FI as well
on its interaction with side-channel attacks.

Specifically, regarding fault attacks, the defender needs to exercise caution
when applying ID, since the device may not adhere to the “single instruction
skip” model. In such cases, the countermeasure is ineffective and we demonstrate
that it can even benefit certain fault injection strategies. In addition, we highlight
how even an effective application of ID can enhance our capability to perform
side-channel attacks on the underlying implementation. Thus, we establish that
care needs to be taken with respect to the equilibrium between fault injection
defenses and side-channel resistance.

In the process of investigating these software defenses, we built the first open-
source compiler capable of generating duplicated code for any C/C++ program.
In this way, we hope to stimulate further research in this area.

1.2 Contribution

We summarize our contributions as follows:

– We experimentally determine that instruction skipping is not a realistic fault
model for modern ARM Cortex-M4 MCUs.

– We develop and open source 4 an instruction duplication compiler for ARM
Thumb2 architectures. To our knowledge, this is is the first time that such
a compiler is publicly available.

– We examine the interaction between n-plication and side-channel resistance
and demonstrate the trade-off using an information-theoretic approach. In
addition, we show how horizontal exploitation techniques can leverage the
side-channel introduced by ID-based defenses.

– We examine how the redundancy of infective countermeasures can interact
with side-channel resistance and demonstrate how a Hidden Markov Model
can render infection [19] equivalent to ID from a side-channel point-of-view.

This paper starts with the background (in Section 2) and with an overview
of the related work in Section 3. Sections 4 and 5 investigate the limitations of
the assumed FI model as well as the limits of compiler-based ID. In Sections 6
and 7 we determine the impact of hardening code with ID on SCA attacks. We
summarize our findings in Section 8.
4 The code is available at: https://github.com/cojocar/llvm-iskip
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2 Background

Software-based instruction redundancy methods for fault detection were pro-
posed by Barenghi et al. [6]. In this technique, the original stream of instructions
to be executed is duplicated (or even triplicated), one instruction after another,
either manually or automatically [8, 38, 32].

For example a load from memory (ldm r0, [r2, #0]) is transformed by
duplication in two loads originating from the same memory. To provide fault
detection the destination registers must be different and then checked for differ-
ences (Listing 2). Under single instruction skip model, the fault tolerance arises
when using the same register as destination. Indeed, skipping one single instruc-
tion from Listing 1 has the same effect as executing the original instruction.

ldr r0 , [r2 , #0]
ldr r0 , [r2 , #0]

Listing 1: Fault tolerance

ldr r0 , [r2 , #0]
ldr r1 , [r2 , #0]
cmp r0 , r1
bne fault_detected

Listing 2: Fault detection

In practice, Moro et al. [37] showed that every ARM Thumb-1/2 instruc-
tion can be duplicated. We differentiate three classes of instructions: idempotent
instructions, separable instructions and specific instructions. While the idem-
potent instructions are duplicable with no extra transformation, the other two
classes often require an extra register to perform the duplication.

Therefore, on ARM Thumb-1/2, ID is generic and can be applied automati-
cally regardless of the algorithm that the instruction stream implements.

Automatic deployment. Maebe et al. [32] apply ID for fault detection at
link-time for the ARM architecture. Barry et al. [8] described a compiler able to
produce duplicated instructions, however their tool is not publicly available.

Our LLVM based compiler emits duplicated instructions for the ARM Thumb2
instruction set. Through code annotations, the hardening can be enabled or dis-
abled at function level, as instructed by the developer. The modified LLVM
based compiler has a similar architecture as the implementation described by
Bary et al. [8] and it can compile code in any language supported by Clang (e.g.
C, C++) with different optimization levels, including the AES-128 implementa-
tion used in this paper. It is designed to be a drop-in replacement for any LLVM
based toolchain. Due to space constraints we omit the implementation details.
The compiler is available as an open-source project.

3 Related work

ID and the FI model. Moro et al. [38] practically evaluates instruction du-
plication as a defense for FI on a Cortex-M3 Microcontroller (MCU). They use
electromagnetic (EMI) pulses to insert glitches and show the importance of the
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fault model. Riviere et al. [45] show that the single instruction model is invalid
when caches are enabled. The observed skip behavior, in the presence of an EMI
glitch, is: the last 4 instructions are re-executed and 4 instructions are skipped —
this partially invalidates the instruction duplication defense. Dureuil et al. [27]
model the fault injection attack by including the EMI probe position. When an
attack succeeds, the most probable outcome is to skip 1-4 instructions on a com-
mon smart card. They show that a probable outcome is the corruption to 0 of
the destination operand of a ld instruction. Yuce et al. [48] show the effect of a
single clock glitch on the ID scheme at clock granularity. They observe that the
first instance of the instruction is corrupted and that its duplicated counterpart
is transformed to a NOP instruction, thus defeating the ID. They use a 7-stage
FPGA based implementation and clock glitches for experiments. Instead, we use
a 3-stage pipeline off-the-shelf device and voltage glitches to investigate ID.

ID and SCA interaction. Regazzoni et al. [43] first looked at the interaction
between fault injection defenses and Power Analysis (PA) attacks. Specifically,
they studied an AES implementation with parity based error detection circuitry.
They conclude that the presence of a parity error detection circuit will leak
important information to an attacker through PA. One year later, Regazzoni
et al. [44] experimentally show the exploitability of an known-by-the-attacker
error detection circuit. Pahlevanzadeh et al. [40] look at three fault detection
methods designed specifically for AES: double module redundancy, parity checks,
inverse execution; all implemented on an FPGA. They find that parity checks are
actually improving the resistance against standard Correlation Power Analysis
(CPA). Similarly, Luo et al. [31] use CPA to attack an FPGA implementation
of AES which is hardened for fault detection. They conclude that duplication
does not improve the success rate of the attack in respect to the unhardened
AES implementation. However, we stress that the approaches of [40, 31] use
naive CPA attacks and do not rely on multivariate, horizontal exploitation of
the leakage. Such attack-dependent techniques do not reveal the full picture and
may lure the side-channel evaluator in a false sense of security.

4 FI preliminaries

Because ID and n-plication are defenses for faults, we experimentally evaluate
them in a realistic fault injection scenario.

4.1 Fault injection background

Fault injection attacks change the intended behavior of a target by manipulating
its environmental conditions. This can be accomplished using different fault in-
jection techniques such as: voltage FI, electromagnetic FI and optical FI. In this
paper we focus only on voltage FI where glitches are introduced in the voltage
signal that powers the subsystem responsible for executing software. Voltage FI
is easy to mount as it does not require sophisticated equipment and it is invasive.
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FI model. Faults can target different physical layers of the device: single tran-
sistors, logic gates or computation units [47]. In this paper, we are interested in
the observable effect of faults, namely, in faults that can cause a change in the
program flow and that manifest at the instruction level. We note several types of
faults in respect to instructions: single instruction skip [7], multiple instruction
skip [45, 46], instruction re-execution [29, 45] and instruction corruption [46].
These types of faults are from now on referred to as the fault model.

Fault injection parameters. The following glitch parameters are important
when performing voltage FI:

– the Normal Voltage is the voltage supplied to the target.
– the Glitch Voltage is the voltage subtracted from the Normal Voltage when

the glitch is injected.
– the Glitch Offset is the time between when the trigger is observed and when

the glitch is injected.
– the Glitch Length is the time for which the Glitch Voltage is set.

Finding the right parameters for a target is defined as characterization.

4.2 Experimental FI setup

Fault injection target. All fault injection experiments described in this sec-
tion are performed targeting an off-the-shelf development platform built around
an STM32F407 MCU. This MCU is implemented using 90nm technology and
includes an ARM Cortex-M4 core running at 168 MHz. This Cortex-M4 based
MCU has an instruction cache, a data cache and a prefetch buffer.

Related research used a similar experimentation target. Moro et al. [36, 38]
used a development board designed around an 130nm technology MCU featuring
an ARM Cortex-M3 core running at 56 MHz. The Cortex-M3 and Cortex-M4
are very similar and we expect the differences to have minimal impact. The latter
includes additional specialized instructions which are not targeted in this paper.
The pipeline size (3 stages) and the rest of the instruction set are the same.

To avoid instruction re-execution, which was shown to be possible by Rivier
et al.[45], all experiments are performed with the prefetch buffer disabled and
with caches enabled, unless otherwise stated.

Fault injection tooling. The voltage FI test bed is created using Riscure’s
VC Glitcher product5 that generates an arbitrary voltage signal with a pulse
resolution of 2 nanoseconds. Similarly to previous work, in a synthetic setup, we
use a General Purpose Input Output (GPIO) signal to time the attack which
allows us to inject a glitch at the moment the target is executing the targeted
code. The target’s reset signal is used to reset the target prior to each experiment
to avoid data cross-contamination.
5 https://www.riscure.com/security-tools/hardware/vc-glitcher
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4.3 Fault injection characterization

We use the code snippet from Listing 3 for two purposes: (a) to find the glitch
parameters (characterization) and (b) to invalidate the single instruction skip
model for the target described in Section 4.2. The code is a copy-loop construc-
tion that is known to be a common target for fault injection because it has
significant duration [46]. The targeted code is executed in a loop to minimize
the impact of the Glitch Offset parameter as it does not matter what iteration
of the loop and which part of the loop is hit.

0: ldm r0 , {r4 -r10}
stm r0 , {r4 -r10}
subs r1 , #1
bne 0b // loop back

Listing 3: Characterization code 3.2 3.0 2.8 2.6 2.4 2.2 2.0
Glitch Voltage (V)
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Fig. 1: Behavior under faults

The target’s susceptibility to voltage FI attack is determined using the follow-
ing glitch parameters: voltage ∈ [−3.3V,−2.0V ], offset ∈ [2µs, 5µs] and length
∈ [70ns, 200ns]. The normal voltage is set to 3.3V. The results of FI experiments
can be classified in three groups: Expected, Successful and Mute. The experiments
are plotted in Figure 1 and show a clear relationship between the voltage and
the length of the glitch. For the Successful experiments (black, the diagonal
boundary) we observed a change in the target’s behavior without affecting its
continuation. For all Mute experiments (light gray, above the diagonal) the tar-
get halted or performed a reset. The Expected experiments (dark gray, below
diagonal) are the ones for which we did not observe a change in the execution.

Instruction corruption model. Executing under faults the code from List-
ing 3 yields the following result: the memory pointed by r0 after the loop is dif-
ferent that its contents before the loop (Successful). If only the instruction skip
fault model applies to the target, then the memory pointed by r0 should be the
same as before the loop executes (Expected). We ran the experiment 20K times
and, in 15.91% (SE=25x10−4) of cases were Successful. In 65.59% (SE=33x10−4)
of cases the device crashed or failed to answer and, the rest of the cases were
Expected. The standard error (SE) is computed as

√
P ∗ (1− P )/N , where N is

the number of experiments (20K in this case) and P is the success rate.
The non-negligible number of Successful cases indicates that the target ad-

heres to a more complex fault model than single instruction skip model – i.e.
the instruction corruption model. We say the instruction corruption fault model
holds iff the observed behavior of the target under faults cannot always be ex-
plained by removing one (or multiple) instructions from the execution stream.
This loose definition captures as well the data corruption fault model.
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original n = 2 (ID) n = 3 n = 4 n = 5
SR (%) 15.91 15.61 11.59 13.5 11.96

SE (x10−4) 25 25 22 24 22
Table 1: Success rate of FI and n-plication levels

5 Fault injection effectiveness

In this section, we practically evaluate ID under instruction corruption FI model.

5.1 Inaccuracies in the FI model

We resort to two experiments, that show how ID can negatively affect the fault
tolerance of ID if a different model than single instruction skip holds. Further-
more, we show that when applying ID the runtime configuration of the target
must be considered.

ID and the “real” FI model. We determine the impact of ID by duplicating
and n-plicating code from Listing 3. For each code instance, we perform 10K
experiments, using the glitch parameters outlined in Section 4.3.

Table 1 shows that ID does not provide fault tolerance for software for our
target. Even if the instruction is n-plicated three times or more, the fault toler-
ance is not substantially improved. Because we use a real target with no access to
low level hardware features (i.e. flip-flop states), we do not aim to detail the root
cause of this behavior. Instead, we note that the instruction corruption model
captures this result.

Limitations of a static FI model. When ID is deployed automatically at
compile time, the compiler is not aware of the runtime configuration (e.g. cache
configuration). In this experiment, we show how ID and n-plication affects the
success of FI when several runtime configurations are used.

In Figure 2 we enable and disable the prefetch buffer (p), the instruction
cache (i) and the data cache (d) and plot the fault injection success rate on the
code similar to Listing 5. A capital letter in the title of the subplot means that
the specific feature is enabled. We use the color scheme defined in Section 4.3.

Because the data on which our test operates is stored in registers, toggling
the data cache has no impact on the fault tolerance. However, we observe four
interesting results. First, ID increases the probability of a successful fault when
the device is used with all its functionality enabled (PID). In this case, n-plication
with n = 3 and n = 4 has the highest fault tolerance. Second, when all features
are disabled (pid), none of the n-plication level improve the fault tolerance.
Thirdly, when the instruction cache is disabled, enabling the prefetch buffer
makes ID the most effective amongst the n-plication levels (pid, piD vs. Pid,
PiD). Finally, comparing the right-most four subplots with the left-most subplots,
the instruction cache offers an improved resilience against voltage glitches.

As a consequence, the compiler must be aware of the runtime configuration
of the device when it emits redundant instructions.
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Fig. 2: SR of faults vs. multiple n-plication levels and runtime configurations

5.2 Impact of compiler techniques

We now explore two compiler techniques that affect the effectiveness of ID.

Register allocation pressure. Register Allocation (RA) is the process in
which the compiler maps the virtual (unlimited) registers to physical (limited)
registers. This process is highly optimized to yield the best space and runtime
performance. In this section we show that the modified register allocation scheme
that ID requires has a negative impact on the fault tolerance.

add r5 , r5 , #1
add r7 , r7 , #1

Listing 4: Registers are incremented

add r4 , r5 , #1
mov r5 , r4
add r6 , r7 , #1
mov r7 , r6

Listing 5: Code ready for duplication

Listing 5 is the transformation of the code from Listing 4 with the add being
replaced by an idempotent sequence that uses an extra temporary register (see
Section 2). We define a successful glitch with respect to the contents of the
registers r5 and r7. If the contents of the registers is different than what is
expected (i.e. the number of iterations added to the initial value of the registers)
then we count this trial as a success. Otherwise, the glitch was not inserted or
the parameters caused a mute.

The ID aware RA yields a higher success rate for FI (SR=18.64%, SE=20x10−5)
than the unmodified one (SR=10.63%, SE=16x10−5). Apart from runtime per-
formance degradation, the increased register pressure induced by the custom
RA has a two fold negative impact on the fault tolerance. First, it increases
the probability of a register to be spilled on the stack. As a consequence, the
compiler will likely chose complex multi-memory access operations over simple
load or stores. The multi-memory operations (e.g. ldm, stm) are more prone to
faults than single memory operations [46] or than register to register operations.
Second, an extra instruction to write back the result is needed (mov). This extra
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instruction is duplicated, therefore it increases the window in which a fault can
be injected and it adds another leakage point.

In short, not only does the ID register allocation works against the estab-
lished RA optimizations, but it also has a negative effect on the fault tolerance
guarantees. This is a fundamental limitation of ID.

Instruction ordering. The compiler has the freedom to emit instructions in
any order. This is done either for optimization purposes (e.g. benefit from a
multi-stage pipeline) or to avoid a certain illegal order of instructions. Barry et
al. [8] showed that the correct scheduling of duplicated instructions can reduce
the runtime overhead of the duplicated code, from 2.14X down to 1.70X-2.09X on
a software AES implementation. Yuce et al. [48] hint at the interaction between
ID and the processor pipeline.

To analyze what is the impact of the instruction order on the success rate of
injected faults we compare the success rate of the code Listing 6 and its possible
scheduled version Listing 7. We define a successful trial whenever the memory
pointed by r6 is different than its initial value. Our results show that instruction
scheduling decreases the success rate of injecting a fault, from 8.51 % to 4.00%.

Intuitively, the pipeline for Listing 6 contains the protected instruction and its
copy right after another. Therefore, the chances that a fault affects the protected
instruction and its copy at a given clock cycle is higher than in the case when the
protected instruction and its copy are one (or more) instruction apart (Listing 7).
These results are in line with the work of Yuce et al. [48], which shows that ID
can be bypassed with a single glitch because multiple instructions are in the
pipeline at a given clock cycle.

When emitting duplicated code the order is important, yet to date a FI model
that captures the order interaction does not exist, let alone a compiler that uses
this model. We leave the design of such a model and compiler as future work.
We conclude that compiler optimization techniques (e.g. instruction scheduling,
register allocation optimality) interact with the fault tolerance guarantees of ID.

add r0 , r4 , r1
add r0 , r4 , r1
ldr r5 , [r6 , #0]
ldr r5 , [r6 , #0]

Listing 6: Natural order

add r0 , r4 , r1
ldr r5 , [r6 , #0]
add r0 , r4 , r1
ldr r5 , [r6 , #0]

Listing 7: Possible re-ordering

6 SCA of ID and Infection Countermeasures

This section demonstrates the interactions between the redundancy-based FI
countermeasures and the side-channel resistance of an implementation that is
employing them. In Section 6.1 we analyze the theoretical effect of ID and n-
plication on SCA using an information-theoretic approach. Section 6.2 demon-
strates how to perform SCA on infective countermeasures using a Hidden Markov
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Model that simplifies the exploitation phase of infection to that of ID. Through-
out this section, capital letters denote random variables and small case letters
denote instances of random variables or constants. Bold letters denote vectors.

6.1 Information-Theoretic Evaluation of ID for SCA

From a side-channel perspective, the ID countermeasure increases the available
leakage in a horizontal manner, either as a fault detection or as a fault tolerance
mechanism. Analytically, in the case of an unprotected implementation (without
ID) a univariate adversary can acquire the leakage of a key-dependent value v,
i.e. observe Lv ∼ N (v, σ), assuming identity leakage model. On the contrary,
when instruction n-plication is implemented (n > 1), the adversary can observe
over time an n-dimensional leakage vector Lv = [Lt=1

v , . . . , Lt=nv ]. The vector
contains n independent observations of value v under the same noise level, i.e.
we assume that Ltv ∼ N (v, σ), t = 1, . . . , n.

Given that the side-channel adversary has located the sample positions of
the repeated leakages, he can perform a pre-processing step where he averages
all available samples that leak v, i.e. he computes L̄v = (1/n)∗

∑n
t=1 L

t
v. The av-

eraging step results in noise reduction of factor
√
n, obtaining L̄v ∼ N (v, σ/

√
n)

and as a result side-channel attacks can be enhanced. Note that noise reduction
can be particularly hazardous even when additional side-channel protection is
implemented. For instance, both masking and shuffling countermeasures [13, 14]
amplify the existing noise of a device and will perform poorly if the noise level
has been reduced by a large factor

√
n. In order to demonstrate the effect of

noise reduction, we employ the information-theoretic framework of Standaert et
al. [13] which evaluates the resistance against the worst possible attack scenario.
The MI between the key-dependent value V and leakage Lv can be computed
using the following formula: MI(V ; Lv) = H[V ] +

∑
v∈V Pr[v] ·

∫
lv∈Ln

Pr[lv|v] ·

log2 Pr[v|lc] dlv, where Pr[v|lv] = Pr[lc|v]∑
v∗∈V

Pr[lv|v∗]
.

From Figure 4 we derive the following three conclusions. First, we observe
that n-plication (for n > 1) shifts the MI-curve to the right, i.e. the FI coun-
termeasure produces repeated leakages which have a direct impact on the side-
channel security of the implementation. Second, we note that if ID translates to
more than two assembly instructions that manipulate the same value, we will
likely observe even more hazardous repetitions. Third, it follows that a counter-
measure designer needs to balance the need for side-channel resistance and FI
resistance by fine-tuning the parameter n.

6.2 Converting Infection to ID for SCA

It is important to point out that, apart from straightforward instruction dupli-
cation, a wide variety of FI countermeasures rely on some form of spatio-temporal
redundancy. For instance, detection methods such as full/partial/encrypt-decrypt
duplication & comparison of a cipher [21] produce repetitions of intermediate
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values that are exploitable by the side-channel adversary. Thus, an MI-based
evaluation of duplication & comparison is identical to Figure 4. Similarly, coun-
termeasures that rely on particular error detection/correction codes [22] also
introduce redundancy that has been evaluated in the side-channel context by
Regazzoni et al. [26].

In this section, we expand in the same direction and examine the interac-
tion between side-channel analysis and the more recent infective countermea-
sure [19]6. Specifically, we demonstrate how the application of a Hidden Markov
Model (HMM) [2, 16] in a low-noise setting can render infective countermeasures
equivalent to ID from a side-channel point-of-view.

Infective countermeasures were developed as a solution to the vulnerabilities
of the duplicate & compare methods [25]. Instead of vulnerable comparisons, in-
fection diffuses the effect of faults in order to make the ciphertext unexploitable.
In particular, we focus on the infective countermeasure of Tupsamudre et al. [19],
which has been proven secure against DFA [24], given that the adversary cannot
subvert the control flow and that certain fault models are not applicable [20].
The countermeasure is shown in Algorithm 1.

The infective countermeasure alternates between real, redundant and dummy
cipher rounds (step 8). It requires an r bit random number rstr (step 3),
consisting of 2n 1’s that trigger computation rounds (redundant or real) and
(r − 2n) 0’s that trigger dummy rounds (steps 5-7). In the event of FI, the dif-
ference is detected via function BLFN : size(R) → 1, where BLFN(0) = 0
and BLFN(x) = 1,∀x 6= 0. The error is propagated via step 11.

From a side-channel perspective, the infective countermeasure can be viewed
as a random sequence of r round functions, where only the 2n computation
rounds are useful for exploitation. Thus, the objective of the side-channel ad-
versary is to uncover the hidden sequence of rounds and to isolate the useful
ones. Subsequently, one can exploit e.g. the first redundant and first real round
together via averaging, which is identical to the afore-mentioned exploitation of
ID. Distinguishing effectively dummy rounds from computational ones is non-
trivial, especially when extra randomization steps are involved [23]. However, the
presence of control logic in the infective countermeasure such as variables λ, ζ
and κ can emit noisy side-channel information about the sequence of rounds. We
model such leakage as Lc = [Λ,Z,K] + N (0,Σ), where the deterministic part
[Λ,Z,K] is defined over {0, 1}3 and N (0,Σ) denotes 3-dimensional noise vector
with zero mean and diagonal covariance matrix Σ.

The suggested HMM is constructed the following way. We encode the main
loop of Algorithm 1 using two states, i.e. at a given time t, the state st = i ∈
{C,D}, where C corresponds to a computational round and D to a dummy
round. The transitions in the sequence of states is described by matrix T , where
Ti,j = Pr(st+1 = j|st = i). Figure 3 shows the state diagram and the probabili-
ties for matrix T, namely p = 2n/r. We note that it is possible to unroll the loop
and use additional states to describe the transitions, such that we can fine-tune

6 Infective countermeasures in this [19] work do not pertain to the modular arithmetic
infective techniques used by Rauzy et al. [3]
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the probabilities. However, we opt for such simple representation to minimize
the model’s data complexity.

Algorithm 1: Infection
Tupsamudre et al. [19]

Input: Plaintext P , key K, round j
key kj , ∀j = 1, . . . , n, n
number of rounds, dummy
plaintext β, dummy round key
k0

Output: Ciphertext C=Cipher(P,K)
1 Real R0 ← P , Redundant R1 ← P ,

Dummy R2 ← β
2 i← 1
3 rstr ∈R {0, 1}r //r random bits
4 for q = 1 until r do
5 λ← rstr[q]
6 κ← (i ∧ λ)⊕ 2(¬λ)
7 ζ ← λdi/2e
8 Rk ← RoundFunction(Rk, kζ)
9 γ = λ(¬(i∧ 1)) ·BLFN(R0⊕R1)

10 δ ← (¬λ) · BLFN(R2 ⊕ β)
11 R0 ← (¬(γ∨δ)·R0)⊕((γ∨δ)·R2)
12 i← i + λ
13 q ← q + 1
14 end
15 return R0

Dstart

Cstart

p

1 − p

1 − p

p
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Fig. 3: The Markov model describing the
states, transition probabilities T and
prior probabilities Tpr.
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Fig. 5: Success rate of HMM-
based sequence detection vs.
noise level σ

In the HMM, the round sequence s = [s1, . . . , sr] is unknown, but the adver-
sary is assisted by leakage observations [lt=1

c , . . . , lt=rc ]. To exploit the observa-
tions, the HMM associates every state i ∈ {C,D} with an estimated emission
probability function, i.e. emission ei(ltc) = Pr(ltc|st = i).

Having established the HMM for our scenario, we perform a simulated ex-
periment where we try to identify the round sequence for a gradually increasing
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noise level. The simulated sequence contains 22 computational rounds and 78
dummy rounds, i.e. it corresponds to a computation of AES-128 using infection
with r = 100. For every noise level we apply the Viterbi algorithm [1], which can
recover the most probable sequence s of length r, while factoring in the leakage
observations lt=1...r

c and the transition probabilities of T. The simulation (Fig-
ure 5) shows that for fairly small noise levels (e.g. σ < 0.3) we are able to uncover
the hidden sequence with high probability, making the side-channel exploitation
of infection equivalent to the exploitation of instruction duplication.

7 Practical SCA Results

In this section, we apply the exploitation techniques of Section 6.1 in our ex-
perimental setup that protects an AES-128 implementation using ID. We ver-
ify the technique’s applicability to real-world scenarios by showing their in-
creased efficiency compared to standard SCA methods. We use an AVR MCU
(XMEGA128D4) as the main target for our SCA experiments and we collect
power traces using the open-source ChipWhisperer product7. The clock fre-
quency of the target is 7.3728 MHz and we sample the power consumption of
the target 4 times per clock cycle.

We use three different code patterns to evaluate the interaction between SCA
and ID in different scenarios. Patterns A and B demonstrate how ID affects
different instructions, namely instructions eor and ld respectively. Pattern C
showcases the duplicated key addition and Sbox parts of a lookup-table-based
AES implementation.

A eor r10 , r17
B ld r10 , Y

C
eor r9 , r17
add r28 , r9
ld r10 , Y

Fig. 6: Code snippets for
the SCA experiments. Y is
the output buffer and r17
contains the hardcoded se-
cret key.
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Fig. 7: CPA vs. Template on C

7.1 Horizontal Exploitation using CPA

For the afore-mentioned patterns, we perform an experimental evaluation where
we put forward a variant of the traditional Correlation Power Analysis (CPA) [11].
In the case of n-plication, we involve a horizontal averaging pre-processing strat-
egy as follows.
7 https://newae.com/tools/chipwhisperer/
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1. Locate the intervals pertaining to the n different repeated leakages. In every
interval, heuristically select the point in time with the highest correlation to
the targeted key-dependent value, obtaining vector l = [lt=1, . . . , lt=n].

2. For every vector l compute the average value l̄ = (1/n) ∗
∑n
t=1 l

t, thus
reducing the noise level.

3. Perform CPA using the averaged values (l̄).

In Figure 8, we observe how the averaged CPA using a Hamming weight
model outperforms naive CPA that ignores horizontal leakage, since it requires
less traces to converge. Thus, the theoretical results of Section 6.1 are confirmed
in practice and we conclude that horizontal averaging rejects noise. In addition,
the difference between the naive CPA on the original code and averaged CPA
on the duplicated code is larger on the duplicated eor pattern rather than on
the duplicated ld. This behavior is attributed to the SNR of ld/st instructions,
which is significantly higher compared to the SNR of ALU operations (such as
eor)8, since the later do not manipulate the memory bus. As a result, there is
less need to reject noise on memory instructions. Last, we observe that a naive
CPA attack when ID is in place may be slower to converge due to interference
between duplicated consecutive instructions.

This work focuses on n-plication used as a fault tolerance mechanism, the
same averaging technique can be applied when n-plication is used as a fault
detection mechanism. In the latter case the instruction stream is the same as
in the former case when no faults are injected, therefore, the side channel is
similarly amplified.
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Fig. 8: Success rate of the CPA attack. single is CPA on the original code. On
duplicated code, no-avg is the naive CPA and avg is the CPA with averaging.

7.2 Horizontal Exploitation using Templates

In order to fully exploit the available horizontal leakage, we also use a template-
based approach [18, 15], which comprises two phases for attacking an AES-128
implementation: a profiling phase, in which templates are built for 256 key can-
didates of an AES-128 key byte and an extraction phase, where a number of
traces are used to recover the unknown key. In our experiments, for the profiling
8 SNR( A )=2.23 and SNR( B )=18.20
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phase, we use 3.2k traces of the device per key candidate and perform dimen-
sionality reduction, selecting Points of Interest (POIs) via Principal Component
Analysis [17]. We deployed the following two template attacks. To ensure that
the side-channel effect of ID is exploited during the heuristic step of POI se-
lection, the first attack breaks the trace in multiple intervals, each containing a
single assembly instruction and performs POI selection in every interval sepa-
rately. The second template attack considers the full trace as a single interval
and performs POI selection in the whole region.

In Figure 7, we focus on code pattern C . We perform the CPA attack (naive
and averaged) that exploits the duplication of the ld instruction computing
the Sbox output. Moreover, we perform the multi-interval and single-interval
template attacks. We observe that both template attacks achieve similar perfor-
mance and surpass the averaged CPA. Thus, we verify the applicability of tem-
plates in a horizontal context and conclude that they constitute an optimized
way to exploit repeated leakages. We note that template attacks are inherently
multivariate and may often require an extensive profiling phase to effectively
characterize the model. On the other hand, averaged CPA compresses multiple
samples, i.e. it is a univariate technique with a less informative model compared
to templates, yet it has the upside of being faster to train and compute.

8 Conclusion

In this paper we analyzed the limitations of Instruction Duplication (ID) as a
fault tolerance mechanism. First, we proved that the model under which ID op-
erates has fundamental limitations, rendering the ID ineffective or even harmful.
ID is designed under the assumption of a single fault model. However, in practice
a more complex model can hold for a specific target, thus relying only on ID as
a fault tolerance mechanism is not effective against FI attacks.

Second, the information leakage through side channel is amplified. We showed
that the side channel introduced by instruction by ID, can be successfully ex-
ploited to extract secret information. Moreover, other instruction redundancy
based defenses suffer from the same weaknesses in respect to side channels.

Finally, while automatically applying redundancy based defenses is promis-
ing, the FI model has to be fine tuned and extended for each targeted device
according to its runtime configuration. The compiler must use this model to
carefully balance fault tolerance guarantees and performance. Whether or not
this is possible is still an open question.
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Appendix

Differential Fault Analysis (DFA) attack on software AES-128

In Section 5 we determined the impact of ID as a fault tolerance mechanism
on synthetic code. Now we show the interaction between ID and the number of
trials needed to conduct a fault based attack. To this extent, we automatically
apply ID on a large and complex code construction, the AES-128 cryptographic
algorithm, and perform the DFA attack described by Dusart et al. [28]. The goal
of the attack is to extract the fixed key by observing the faulty output.

We use the tiny-AES128-C9 implementation of the AES-128 cipher, in ECB
mode for our target to encrypt a fixed input with a fixed key. A trigger is
implemented between the 9th and the 10th round to guarantee we always hit the
right location within the algorithm. Two versions of the AES-128 implementation
are compiled: a hardened version (with ID in place) and an non-hardened version.

A 2K trace set containing traces with faulty outputs is acquired for each
implementation. We randomly select nt from these trace sets and use them in
the DFA attack. We repeat this process 100 times for each implementation and
we plot how often the attack is successful in Figure 9.
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Fig. 9: DFA on AES-128

3 or less 4 5 or more
hardened (ID) 0.2% 64.0% 35.7 %

unhardened 1.1% 41.5% 57.4 %
Table 2: Bytes changed in the output

The non-hardened implementation outperforms the hardened implementa-
tion in terms of FI tolerance. A clear indication that ID is not effective for
protecting the AES-128 algorithm when the instruction corruption fault model
holds. Depending on the time penalty required for a single experiment, the small
difference can have a noticeable effect. If the target needs to be reset before each
experiment then tens of seconds are added for each experiment. Moreover, the
target might remove or change the keys after a limited amount of encryptions.

We analyzed the outputs in more detail and counted how often multi byte
changes are observed in both implementations (Table 2). From the number of all
faults observed (i.e. at least 1 byte difference), 4 bytes faults10 are more probable
to be observed in the hardened implementation.

To conclude, fewer successful faults are needed to attack the hardened AES.
9 https://github.com/kokke/tiny-AES128-C

10 These are the faults useful for DFA on AES
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