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Abstract. When studying the DPA resistance of S-boxes, the research
community is divided in their opinions on what properties should be con-
sidered. So far, there exist only a few properties that aim at expressing
the resilience of S-boxes to side-channel attacks. Recently, the confusion
coefficient property was defined with the intention to characterize the
resistance of an S-box. However, there exist no experimental results or
methods for creating S-boxes with a “good” confusion coefficient prop-
erty. In this paper, we employ a novel heuristic technique to generate
S-boxes with “better” values of the confusion coefficient in terms of im-
proving their side-channel resistance. We conduct extensive side-channel
analysis and detect S-boxes that exhibit previously unseen behavior. For
the 4 × 4 size we find S-boxes that belong to optimal classes, but they
exhibit linear behavior when running a CPA attack, therefore preventing
an attacker from achieving 100% success rate on recovering the key.

1 Introduction

Today, the most practical attacks belong to side-channel analysis (SCA) that
target actual implementations of block ciphers in software or hardware. It is
well known that the efficiency of side-channel attacks is much greater [1] than
linear [2] or differential [3] cryptanalysis. To improve an algorithm’s resiliency
to SCA, there exist many possible countermeasures such as various hiding and
masking schemes [4]. However, all countermeasures come with a substantial in-
crease in cost due to larger memory and area requirements and the decrease in
performance of the algorithm implemented.

S-boxes (as the only nonlinear part in many ciphers) have a fundamental role
in the security of most modern block ciphers [5] and their “good” cryptographic
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properties are of utmost importance for the security of encryption schemes in
numerous applications.

Although there exist a plethora of cryptographic properties defined for S-
boxes in the literature, there are only a handful properties related to the SCA
resistance. Currently, the properties related with SCA are SNR (DPA) [6], trans-
parency order [7], criterion for the S-box resilience against CPA attacks [8] and
the most recent measure, confusion coefficient [9, 10]. Considering the trans-
parency order, which was heavily investigated so far, results from different groups
are somewhat conflicting [11–13]. Yet in all previous works the transparency or-
der seems to have a certain influence on DPA resistance. For example, in the
4 × 4 S-boxes case (as used in e.g. PRESENT [14]), it is shown that one can
obtain S-boxes that have better DPA resistance, while retaining properties of
optimal S-boxes [15].

Nevertheless, numerous inconclusive results for different ciphers, platforms
and leakage models have led to an attempt to redefine the transparency order
measure [16]. This new approach also remains to be convincing in practical
results.

When considering 8×8 S-boxes, previous results on transparency order suffer
from two major drawbacks. The first drawback stems from the fact that an
improved S-box (in regards to the transparency order property) may result in
deterioration of some properties related with linear and differential resistance of
the algorithm (e.g. nonlinearity and δ-uniformity). The second major drawback is
the necessity to implement such improved S-boxes as lookup tables. For instance,
an improved AES S-box (e.g. derived from heuristic search) loses the algebraic
properties that are important for compact implementations [17, 18]. Still, there
are possible settings where the improvement in DPA resistance makes up for the
aforementioned drawbacks. In contrast to this, when considering 4× 4 S-boxes,
the situation is improved since both implementation options, as a lookup table
and as a Boolean function in hardware, are viable.

In this paper, we generate S-boxes with an improved confusion coefficient
and we show that this also improves DPA resistance. In order to confirm that,
we conduct simulated and practical side-channel analysis on those improved S-
boxes.

1.1 Related Work

In 2004, Guilley presents SNR (DPA) measure which is, to our best knowledge,
the first property related with DPA resistance [6]. One year later, Prouff presents
the transparency order property which is the first DPA-related property for the
multi-bit case [7]. The idea proved to be valuable, as in 2012 several papers re-
visit the topic [11–13,15].
Apart from the transparency-related efforts, a new line of research by Yunsi Fei
et al. [9,10,19,20] attempts to actually model the behavior of a cryptographic im-
plementation with respect to side-channel resistance. Starting from DPA-related
models [9, 19] they expand the concept to CPA attacks [10] and masking [20],
while offering a probabilistic model for side-channel analysis.
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1.2 Our Contribution

It is evident that using side-channel leakages is a powerful means of cryptanaly-
sis. Therefore, it is important to find effective and efficient countermeasures (or
combinations of them) that can prevent this type of cryptanalysis. This paper
investigates the option of using heuristically-created S-boxes to increase the re-
sistance to implementation attacks. More specifically, we are the first to use the
confusion coefficient as a cipher design parameter. With the assistance of genetic
algorithms, we create 4 × 4 and 8 × 8 S-boxes that obtain improved confusion
coefficient property. For the 4 × 4 case, we create S-boxes that have increased
resistance in the form of “ghost peaks” [4] (defined here as “Phantom” S-boxes),
while remaining in optimal classes [5]. For the 8 × 8 case, we obtain increased
resistance, albeit at the cost of classical cryptanalytic properties like nonlinear-
ity and δ-uniformity. We evaluate the newly generated S-boxes in a real world
scenario: we implement variants of PRESENT [14] and AES [21] ciphers that
employ the new S-boxes and we perform side-channel analysis on them.

The remainder of this paper is organized as follows. We present necessary
information about relevant cryptographic properties of S-boxes in Sect. 2. In
Sect. 3 we give explanations of the algorithms we use and the analysis of several
S-boxes with improved confusion coefficient property. We also compare the prop-
erties of our new S-boxes with the ones obtained from random search as well as
with the original ones. The side-channel resistance of the newly proposed map-
pings is presented in Sect. 4, both with simulations and also with experiments
on a real target. We conclude the paper in Sect. 5.

2 Preliminaries

In this section we present some background information about side-channel anal-
ysis and cryptographic properties of S-boxes that are of interest.

2.1 Side-channel Analysis

Various cryptographic devices can leak the information they process. Those leak-
ages can be exploited by an adversary monitoring side channels such as tim-
ing [22], power consumption [22, 23] or electromagnetic emanation [24]. Such
attacks enable the attacker to obtain otherwise unknown information on the
workings of the underlying algorithm, therefore leading to practical attacks on
even real-world cryptosystems. As these attacks are the most practical ones
among many cryptanalysis efforts, this area attracts quite some interest in the
literature. There are recent publications in the literature that focus on modeling
the physical leakage of an algorithm with the assumption of a certain leakage
model [7,19]. This line of research is aimed to provide a way to evaluate the side-
channel resistance of an algorithm at the design phase to help cryptographers
improve the overall security of a cryptosystem.
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2.2 Cryptographic Properties of S-boxes

As mentioned previously, there exist several properties of S-boxes where each
property relates to a certain cryptographic attack. However, here we concentrate
only on several basic properties such as bijectivity, linearity and δ-uniformity (as
given in [5]) and of course the new measure, confusion coefficient.

The addition modulo 2 is denoted as “ ”. The inner product of vectors ā and
b̄ is denoted as ā · b̄ and equals ā · b̄ = ⊕n

i=1aibi.

Function F, called S-box or vectorial Boolean function, of size (n,m) is de-
fined as any mapping F from Fn

2 to Fm
2 [7]. When m equals 1 the function is

called Boolean function. Boolean functions fi, where i ∈ {1, ...,m}, are coordi-
nate functions of F, where every Boolean function has n variables.

Hamming weight HW of a vector ā, where ā ∈ Fn
2 , is the number of non-

zero positions in the vector.
An (n,m)-function is called balanced if it takes every value of Fm

2 the same
number 2n−m of times [25].

Linearity Lf can be defined as [26]

Lf = max ā ∈ Fn
2

v̄ ∈ Fm∗
2

|WF (ā, v̄)|. (1)

where WF (ā, v̄) is Walsh transform of F [7].

WF (ā, v̄) =
∑
x̄∈Fn

2

(−1)v̄·F (x̄)⊕ā·x̄. (2)

Nonlinearity NF of an (n,m)-function F is equal to the minimum nonlin-
earity of all non-zero linear combinations b̄ · F , where b̄ 6= 0, of its coordinate
functions fi [1].

NF = 2n−1 − 1

2
max ā ∈ Fn

2

v̄ ∈ Fm∗
2

|WF (ā, v̄)|, (3)

Differential delta uniformity δ represents the largest value in the differ-
ence distribution table without counting the value 2n in the first row and first
column position [3, 25,27].

Recently, Fei et al. introduced a new property that relates with the DPA resis-
tance of S-boxes - confusion coefficient [9,10,19,20]. They give a probabilistic
model that encompasses the three core parameters of a side-channel attack: the
target device, the number of traces and the algorithm under examination. That
model manages to separate these three elements and grants us the freedom to
explore the cipher design space by solely focusing on the cipher algorithm. The
confusion coefficient stems from the probability that an intermediate value ψ is
affected by different keys kc, kg (Eq. 4). This notion is extended to the confu-
sion matrix K and ΣY (Eq. 6, Eq. 8), which directly influence the attacker’s
effectiveness SRDPA (Eq. 9).

κ(kc, kg) = Pr[(ψ|kc) 6= (ψ|kg)] (4)
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κ̃(kc, kgi , kgj ) = Pr[(ψ|kgi) = (ψ|kgj ), (ψ|kgi) 6= (ψ|kc)] (5)

K : (Nk − 1)× (Nk − 1), Kij =

{
κ(kc, kg), if i = j

κ̃(kc, kgi , kgj ), if i 6= j
(6)

µ̄Y = 2× ε× κ̄ (7)

where κ̄ is the diagonal vector of K and ε is the the theoretic Difference of Means
for the correct key.

ΣY = 16 ∗ σW /Nmeas ×K + 4× ε2/Nmeas × (K− κ̄× κ̄T ) (8)

SRDPA = ΦNk−1(
√
NmeasΣY

−1/2µ̄Y ) (9)

Equation (9) gives the success rate of a DPA attack (SRDPA). It is computed
over the cumulative distribution function (ΦNk

) of a multivariate Gaussian dis-
tribution, with dimension (Nk) equal to key dimensionality (e.g. 256 for AES
if the selection function partitions into 8-bit targets). The number of traces is
directly represented in the formulas via Nmeas (number of measurements). The
target device is characterized from the signal to noise ratio (SNR = ε/σw) and
the parameters ε and σw can be computed from side-channel measurements.
Cipher algorithm is isolated by defining and constructing the confusion coeffi-
cient κ as given in Eq. (4) and (5). The confusion matrix K that is subsequently
constructed is given in Eq. (6). The matrix elements capture the behavior of
both the cipher and the selection function with respect to a specific key (kc de-
notes the correct key and kg the key guesses that stem from the key space).
The confusion coefficient with respect to a specific S-box was initially defined
as the probability that 2 different keys will lead to a different S-box output as
given in Eq. (4). Intuitively, a high confusion coefficient indicates that the S-box
output (or any other intermediate value ψ targeted by a side-channel attack) is
very distinctive. Thus, the S-box output is a good candidate for data leakage.
Low confusion coefficient values (also referred to as high collision values) make
side-channel attacks harder, i.e. they may require an increase in number of traces
or SNR to yield the correct key candidate.

Early work from Fei et al. suggests that the confusion coefficient matrix
captures the algorithmic behavior of the cipher [9, 19]. However, this matrix
incorporates all possible confusion coefficients with respect to a given key, making
the whole analysis key-dependent. In addition, we consider beneficial to move
towards CPA-related models instead of DPA. Thus, we use more recent findings
from Fei et al., namely the confusion coefficient for CPA, the confusion coefficient
vector and its frequency distribution [10]. We compute the confusion coefficients
for a given CPA selection function as shown in Algorithm 1.

Having computed all possible confusion coefficient values κ w.r.t. CPA attack
and Hamming weight (HW) power model we compute the confusion coefficient
vector. This vector contains all possible coefficient values for every key combi-
nation and its frequency distribution is deemed by the Fei et al. to be possible
characterizer of side-channel behavior. The natural question that arises is what
features of the frequency distribution of the confusion coefficient vector denotes
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Algorithm 1 CPA selection function

for all key pairs ka, kb, ka 6= kb do
for all possible inputs in do
κ(ka, kb) = E[(HW (Sbox(in⊕ ka))−HW (Sbox(in⊕ kb))2]

end for
end for

side-channel resistance. We observe that the mean value of the distribution is
directly related to the choice of the selection function, i.e. it solely depends on
the divide-and-conquer approach that we use in our attack. Moreover, Heuser
et al. demonstrate the link between nonlinearity and the distribution of the vec-
tor [28]. Specifically, highly nonlinear elements lead to a distribution with low
variance. Therefore, we need to find S-boxes that demonstrate a high variance in
the confusion coefficient vector distribution. Note that our S-boxes are generated
under the Hamming weight leakage assumption – depending on the device this
assumption does not always hold.

Two (n, n)-functions S1 and S2 are affine equivalent only if the following
equation holds:

S2(x) = B(S1(A(x)⊕ a))⊕ b, (10)

where A and B are invertible n × n matrices and a, b ∈ Fn
2 are constant

values.
Resistance of S-boxes against most of the attacks remains unchanged if affine

transformation is applied before and after S-box [5].

2.3 Optimal S-boxes

When considering 4 × 4 S-boxes, there exist in total 16! bijective 4×4 S-boxes
which is approximately 244 options to search from. Leander and Poschmann
define optimal S-boxes as those that are bijective, have linearity equal to 8 and
δ-uniformity equal to 4 [5]. Since the linearity of 8 is the same as nonlinearity 4,
we continue talking about nonlinearity property instead of linearity.

Furthermore, they found that all optimal S-boxes belong to 16 classes, i.e.
all optimal S-boxes are affine equivalent to one of those classes [5].

In Appendix A we give values for several relevant properties for 4×4 S-box
size.

3 Experimental Setup and Results

When generating S-boxes with good properties, we use genetic algorithms ap-
proach as they produced good results in previous works [13, 15]. Additionally,
we use random search as a baseline search strategy and affine transformations
to check whether confusion coefficient property is affine invariant.
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Random Search. In this setting we use Monte Carlo search method to find
S-boxes that have good values of confusion coefficient. With this search method
we cannot influence the value of any of the S-box properties and we consider it
as a baseline search strategy. Here, S-boxes are created uniformly at random.

Genetic Algorithms. In this technique we evolve S-boxes that have good
values not only for DPA-related properties, but also for other cryptography rel-
evant properties.

Affine Transformation. As shown in [15] affine transformation affects
transparency order values. We employ several different transformations and in-
vestigate their influence on confusion coefficient.

Further details about genetic algorithms and affine transformation are given
in the following sections.

3.1 Genetic Algorithm

Genetic algorithms (GAs) are a subclass of evolutionary algorithms where the
elements of the search space S are arrays of elementary types [29]. Genetic algo-
rithms belong to evolutionary techniques that have been successfully applied to
various optimization problems. To be able to evolve new individuals (solutions)
GA uses variation operators where the usual ones are mutation and crossover
(recombination) operators. Mutation operators are operators that use one parent
to create one child by applying randomized changes to parent. Mutation depends
on the mutation rate pm which determines the probability that a change will oc-
cur within individual. Recombination operators work on two or more parents
to create offspring from the information contained within parent solutions. Re-
combination is usually applied probabilistically according to a crossover rate pc.
Besides variation operators, it is necessary to decide about selection method.
Today, the k-tournament selection method is widely used for this purpose [29].
In this selection k solutions are selected at random and the worst among them is
replaced by the offspring of the remaining solutions. Further information about
genetic algorithms can be found in [30,31].

Representation and Fitness Functions. There are several possibilities how
to represent S-boxes (e.g. truth tables or lookup tables). We decide to use per-
mutation encoding since in this way the bijectivity property is automatically
preserved. In this representation, n × m S-box is defined with an array of 2m

integer numbers with values between 0 and 2m − 1. Each of these values occurs
exactly once in an array and represents one entry for the S-box lookup table,
where inputs are in lexicographical order.

The initial population for GA is built by creating random permutations of
the designated length.

Details about recombination operators (crossover and mutation operators)
are described in Appendix C.

Maximization of the value of a fitness function is the objective in all evolu-
tionary experiments. A fitness function represents a definition of the problem
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to solve with genetic algorithm. For fitness function we use a combination of
properties as presented in Section 2.

For the 8× 8 case, fitness function equals the sum of nonlinearity (NF ) and
confusion coefficient variance (κ) properties values as follows.

fitness = NF + κ. (11)

When investigating 4 × 4 case, we add to the fitness function δ-uniformity
property. In this way we ensure that evolved S-boxes belong to the one of optimal
S-boxes classes.

fitness = NF + κ+ (2m − δ). (12)

We subtract δ-uniformity value from the maximum obtainable value since we
represent the problem as a maximization problem and δ property should be as
small as possible. Both fitness function can be easily extended to contain more
properties that are of relevance to the evolutionary experiments. As evident from
the formulas above, we do not use weight factors in our fitness equations. This
is due to the fact that we first want to reach as good as possible nonlinearity
(and δ-uniformity for the 4×4 size) values and then for such values find the best
possible confusion coefficient values.

Here we emphasize that our approach is not only easily adaptable when
adding additional properties, but if we want to change e.g. the leakage model it
would only affect one term in the fitness function.

Common Parameters. For every fitness function we run 30 independent
runs and population size is equal to 50. Mutation probability is set to 0.3 per in-
dividual. The parameters above are the result of a combination of a small number
of preliminary experiments and our experience with similar problems; no thor-
ough parameter tuning has been performed. Tournament selection parameter k
is set to 3. Evolution process lasts until the stopping criterion is fulfilled, here
the criterion is 50 generations without improvement.

In Figures 1(a) and 1(b) we present results for random, evolved and original
S-boxes (PRESENT and AES) for sizes 4× 4 and 8× 8 respectively.

We see that for 4 × 4 S-box size we obtain maximum confusion coefficient
variance of 3.07 while staying in optimal classes. For the 8 × 8 size, the best
confusion coefficient variance we found is 4.057. However, this value comes at a
cost of nonlinearity of 98 and δ-uniformity of 12 (AES has nonlinearity 112 and
δ-uniformity 4).

3.2 Affine Equivalence

Recall that resistance of an S-box against most of attacks stays the same if affine
transformation is applied before and after S-box. Therefore, it is useful to check
whether that is true for confusion coefficient property.

As shown before, transparency order property changes under certain affine
transformations [15]. Next, we check what happens with confusion coefficient
variance property under affine transformation. We apply transformations as
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(a) 4× 4 size (b) 8× 8 size

Fig. 1. Nonlinearity vs. confusion coefficient variance

listed in Table 1 to AES S-box as well as to representatives to 16 optimal classes
for 4× 4 size.

Table 1. Affine transformations.

Number Transformation

1 S(x)⊕ c

2 S(B(x)⊕ c)

3 A(S(B(x)⊕ c))⊕ d

4 A(S(B(x)⊕ c)⊕ d)

In this table c, d ∈ Fn
2 are constants, ⊕ represents XOR operation and A and

B are invertible matrices.
Following conclusions apply both for 4× 4 and 8× 8 S-box sizes.
Affine transformation 1 does not change transparency order or confusion co-

efficient values. To change confusion coefficient property, changes 2, 3 and 4 are
applicable. Here we note that our experiments show that the transformations
3 and 4 change confusion coefficient more significantly than the affine transfor-
mation 2. The PRESENT S-box has a confusion coefficient variance of 1.709.
By applying transformation 2, we succeed in obtaining maximal confusion co-
efficient variance of 1.803. However, when applying transformations 3 or 4, we
obtain maximal confusion coefficient of variance 3.07.

Since affine transformation emerges as a good choice for generating S-boxes
with good DPA properties we present result when applying transformation 3 to
AES S-box and lexicographical representatives of 16 optimal classes. We opted
for transformation 3 since it is one of two transformations that is capable of
significantly changing confusion coefficient and we did not observe any significant
difference between transformations 3 and 4. For all experiments the procedure
consists of applying 25 000 random affine transformations and recording the best
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obtained results. Our best results are presented in Table 2. Here, captions G0
till G15 represent lexicographical representatives of 16 optimal classes [5].

Table 2. Results for affine transformation 3.

S-box κ variance

PRESENT 1.709

PRESENT transformation 3.07

G3, G4, G5, G6, G7, G11, G12, G13 3.02

G0, G1, G2, G8, G9, G10, G14, G15 3.07

AES 0.111

AES transformation 0.149

We can observe then in the case of 4 × 4 size, affine transformation reaches
same maximum values (although different S-boxes) as genetic algorithms for 8
out of 16 optimal classes. Furthermore, division between classes that reach 3.07
and 3.02 is the same as in the case of optimal S-boxes and PRINCE suitable
S-boxes [32]. Classes that reach values 3.07 are those that are not suitable for
usage in the PRINCE algorithm. For 8 × 8 size affine transformation improves
confusion coefficient variance only slightly. The frequency distribution of 4 × 4
S-boxes with κ variance 3.07 can be seen in Figure 2.

Fig. 2. Frequency distribution of the confusion coefficient for S-boxes with 3.07 vari-
ance.

In Appendix B we give examples of lookup tables we obtained with GA and
affine transformation. When considering 4×4 size we see that both GA and affine
transformation reach the same value in both classical properties of interest, as
well as for confusion coefficient. Therefore, in this case there is no benefit in
applying GA. However, when considering 8×8 case, if interested in as good as
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possible confusion coefficient value, we observe that GA reaches much better
values (at the cost of deterioration of classical properties like nonlinearity and
δ-uniformity).

4 Side-Channel Experiments

Although the method explained in the previous sections results in the generation
of S-boxes with various values for the confusion coefficient, these S-boxes require
a thorough practical analysis. This is required to quantify how much of a change
in variance in the confusion coefficient will result in a certain gain in side-channel
resistance in terms of the number of measurements required to recover the key.

First, we performed simulations to see how the newly generated S-boxes
behave under the Hamming weight model when a certain amount of Gaussian
noise is added to the measurements. For the simulated experiments, we used 3
newly generated S-boxes and the PRESENT S-box as the baseline case. One
of the 3 newly generated S-boxes is the so called “Phantom” S-box that leads
to having two key candidates with correlation values equal in magnitude, hence
making it more difficult for an attacker who has no knowledge of the exact
leakage model of a device to deduce the correct key with 100% accuracy. The
“Phantom” S-box can be shortly defined as an S-box leading to ghost peaks
in the correlation trace after running the attacks. This happens since the S-
box outputs have either the same or complementary Hamming weight values for
inputs with a particular XOR difference.

Figure 3 presents the logarithm (log2) of the guessing entropy [33] with re-
spect to the number of traces processed for the attacks. We run the attack on
the simulated traces produced with the inclusion of Gaussian noise with mean 0
and standard deviation 16. Important point to note about Figure 3 is that the
PRESENT S-box has a confusion coefficient variance of 1.709. Therefore, it can
be clearly seen that Figure 3(a) shows a clear distinction in guessing entropy
with respect to the variance of the confusion coefficient. Similarly one should
note that AES has confusion coefficient variance of 0.11, and Figure 3(b) shows
a good distinction in guessing entropy w.r.t. the confusion coefficient variance.

For the practical experiments, we used an ATmega163 microcontroller em-
bedded in a smart card and we collected many measurements using a modified
card reader enabling us to produce a trigger signal the oscilloscope and a LeCroy
oscilloscope. To be able to make a fair assessment of the side-channel security of
different S-boxes, we collected the information from 50 separate attacks and com-
bined them in terms of guessing entropy in Figure 4. Again it is clear that when
the attack is applied using the Hamming weight model, the S-box having the
better confusion coefficient value shows better resistance against side-channel at-
tacks. Here an important fact to note here is that the “Phantom” S-box exhibits
this property only when the Hamming weight model is used. The reason for this
behavior is that “Phantom” S-boxes lead to having either the same Hamming
weight, or the exact opposite Hamming weight in the outputs when the inputs
have a certain XOR difference in between. Therefore, when one of the bits is
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Fig. 3. Guessing entropy of the simulated S-boxes (4×4 in (a), 8×8 in (b)) with respect
to the number of traces processed.

taken into account rather than the Hamming weight of the whole S-box output
for mounting the attack, this “Phantom” behavior may not necessarily persist.
However, if the target leaks the Hamming weight of intermediate values, then
the attacker would be forced to use a weaker selection function (bit model) for
that particular device, therefore leading to an attack requiring the acquisition
of more power traces.
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Fig. 4. Guessing entropy of the S-boxes (4×4 in (a), 8×8 in (b)) with respect to the
number of traces processed on the AVR microcontroller.

It should be noted that the results presented in this paper assume a partic-
ular leakage model, namely the Hamming weight model. We have computed the
confusion coefficient with this assumption in mind but if the leakage of a device
is known, it is straightforward to integrate that leakage model in our genetic al-
gorithms and produce an S-box which will resists to side-channel attacks better
in a device leaking in that particular leakage model.

Although we observe that improving the confusion coefficient results in de-
signs which have better side-channel resistance, we do recognize that this cannot
be counted as a countermeasure. We believe it is interesting to investigate how



13

an improved S-box interacts with other countermeasures and especially with
masking. Since in this work we focus on the practicality of the confusion coeffi-
cient metric, it remains as an interesting open question to see whether the S-box
improvements are persistent after masking or not.

5 Conclusion

In this work we consider the DPA resistance properties of S-boxes of various sizes.
We show it is possible to evolve S-boxes that have better confusion coefficient
variance values. Using genetic algorithms we are able to produce both 4× 4 and
8× 8 size S-boxes that exhibit improved DPA resistance.

Next, we show that an affine transformation changes the confusion coefficient
variance property. This fact can be important not only from the theoretical
perspective, but also from the practical one. We reiterate that with the genetic
algorithms approach change in the leakage model leads only to the change in
one fitness function factor. Therefore, we can easily adapt the procedure to
other more generic scenarios.

In further work we will concentrate on the interaction between the improved
S-boxes and masking countermeasures.
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Appendix A

We are interested only in S-box properties and not the strength or the quality of
the algorithm as a whole. Therefore, we select a set of examples that we believe
are interesting for comparison. Here we compare PRESENT [14], PRINCE [32],
Klein [34], Luffa [35] and NOEKEON [36] S-boxes. Table 3 presents results for
two important criteria for an S-box to be optimal, as well as two properties
related to DPA resistance.
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http://www.sdl.hitachi.co.jp/crypto/luffa/
http://gro.noekeon.org/
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Table 3. S-box Properties of Some Well-known 4× 4 Algorithms

Algorithm NL δ TF SNR(DPA) κ vari-
ance

PRINCE 4 4 3.4 2.129 1.709

PRESENT 4 4 3.533 2.129 1.709

NOEKEON 4 4 3.533 2.187 1.615

Klein 4 4 3.467 1.691 2.742

Luffa 4 4 3.733 2.53 1.191

Appendix B

An example of optimal S-box of size 4× 4 and confusion coefficient variance is:

S-box = (0x6, 0x4, 0x7, 0x8, 0x0, 0x5, 0x2, 0xA, 0xE, 0x3, 0xD, 0x1, 0xC, 0xF,

0x9, 0xB)

Evolved 8×8 S-box with variance of 4.057 and nonlinearity 98 is given below.

S-box = (0xb1, 0x23, 0x98, 0x27, 0x4b, 0x14, 0x9, 0x5c, 0x55, 0xa, 0x4a, 0x4c,
0x1b, 0x3a, 0xa2, 0x53, 0xd6, 0xfb, 0x9f, 0x5e, 0xae, 0xde, 0xe7, 0 x9e, 0x4f, 0x97,
0xf7, 0x2d, 0x2e, 0xbe, 0xab, 0x2b, 0x91, 0x87, 0x36 , 0x1c, 0x81, 0x9d, 0xe5, 0x1a,
0xac, 0x1e, 0x5b, 0x86, 0x8c, 0x74, 0x6a, 0x8a, 0x5f, 0x65, 0xd5, 0x3f, 0xfe, 0xd9, 0xf,
0x37, 0xdd, 0x7d , 0xf2, 0xec, 0xf6, 0xe2, 0xb3, 0xaf, 0x77, 0x99, 0xca, 0xb9, 0xbb,
0xd0, 0x6c, 0xa7, 0x3d, 0xcb, 0x17, 0x75, 0x76, 0x4d, 0xad, 0xcf, 0x5 0, 0x68, 0x16,
0x2, 0x12, 0x78, 0x56, 0x1, 0xb0, 0x71, 0x5a, 0x29, 0 x6, 0x69, 0x58, 0x88, 0x8b, 0x6b,
0xe9, 0x8e, 0xc1, 0xc7, 0x6e, 0x63, 0x13, 0xbc, 0x2f, 0x38, 0x96, 0xbd, 0xdc, 0x62,
0xa8, 0x82, 0x24, 0 xa1, 0xb8, 0x0, 0x80, 0x61, 0xcc, 0x83, 0x22, 0x2c, 0xc2, 0xc0,
0xa0, 0x90, 0xf0, 0xdf, 0xdb, 0xba, 0xe8, 0xf9, 0xbf, 0x7c, 0x59, 0x7b, 0 xeb, 0xd8,
0xa3, 0xff, 0xf3, 0xf8, 0xc8, 0x5, 0x64, 0x66, 0xaa, 0xa9, 0xe, 0xb2, 0xd2, 0x19, 0x10,
0x70, 0x45, 0xc, 0x2a, 0x79, 0x3e, 0x5 d, 0x6d, 0xfa, 0xed, 0xda, 0xe1, 0x9a, 0x7f, 0x4e,
0x8d, 0xf5, 0xfc, 0x7a, 0x57, 0xfd, 0xd, 0xe4, 0x95, 0x18, 0xb4, 0xb5, 0x1d, 0x26, 0x4
8, 0x93, 0x67, 0x7, 0x51, 0xd4, 0x34, 0x43, 0x84, 0x9b, 0x92, 0x60, 0x28, 0x49, 0xc6,
0xc4, 0x8, 0x54, 0xa5, 0x41, 0x40, 0xea, 0xa4, 0x44 , 0x35, 0x15, 0x3b, 0xce, 0xf4,
0xd3, 0x33, 0xb6, 0x8f, 0xcd, 0x25, 0xef, 0xb7, 0x3c, 0x46, 0xee, 0x85, 0x32, 0x3, 0xc3,
0x31, 0xb, 0x30, 0x72, 0xd1, 0x20, 0x4, 0xa6, 0xc9, 0x21, 0x89, 0x47, 0x52, 0x7e, 0x
6f, 0x11, 0xc5, 0xf1, 0xd7, 0x39, 0x94, 0x1f, 0xe3, 0x9c, 0xe0, 0x73, 0xe6, 0x42)

Affine transformation of AES S-box with improved confusion coefficient vari-
ance of 0.149357 is given next.

S-box = (0x92, 0x21, 0xd1, 0x6c, 0x5c, 0xf2, 0xf5, 0x86, 0xdd, 0x43, 0x8a, 0x2 8,

0xb8, 0xa3, 0x8b, 0xcf, 0x12, 0xca, 0x23, 0x37, 0xa6, 0xb7, 0x3b, 0xc0, 0x20, 0x4b,

0x5b, 0x22, 0xa4, 0x8, 0x96, 0xff, 0xb2, 0x56, 0xe 9, 0xcd, 0x17, 0x13, 0x57, 0x76,

0x19, 0x18, 0x1d, 0x25, 0xa0, 0x70, 0xec, 0x26, 0xef, 0x1e, 0x8e, 0x29, 0x39, 0x78,
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0x6b, 0x4d, 0x60, 0x 95, 0x44, 0xfa, 0xab, 0xcb, 0xc8, 0xe, 0xae, 0xf4, 0x79, 0x46, 0xc,

0x85, 0x7c, 0xbf, 0x40, 0x81, 0xd7, 0x3a, 0xf3, 0xbd, 0x2b, 0x27, 0x5 5, 0x90, 0x61,

0x10, 0xde, 0x82, 0xb6, 0xe0, 0x72, 0x4e, 0x35, 0xea, 0x8c, 0xac, 0x77, 0x52, 0xd5,

0x88, 0xdf, 0x64, 0xc1, 0x65, 0x42, 0x 9c, 0x16, 0x15, 0x33, 0x0, 0x7d, 0x4f, 0x98, 0x9f,

0x45, 0xa2, 0x67, 0x69, 0xd6, 0xcc, 0xd0, 0x5e, 0xbb, 0x73, 0x87, 0x6d, 0x74, 0x3f, 0x

ad, 0x7, 0x50, 0x7f, 0x4a, 0x1b, 0x68, 0x71, 0xe2, 0x2, 0x3d, 0xc2, 0x38, 0xba, 0xd9,

0xa, 0x32, 0x31, 0x97, 0xda, 0x99, 0x8f, 0xd8, 0x9d , 0xd3, 0x2e, 0x2d, 0x5d, 0xc4,

0x54, 0x58, 0x91, 0x6, 0x6e, 0x51, 0 x3c, 0x6f, 0xfd, 0xf6, 0xf, 0x48, 0x34, 0x4, 0xf7,

0xc6, 0xa7, 0xf1, 0xaa, 0x47, 0x5a, 0x3e, 0x66, 0xdc, 0x6a, 0x3, 0xb3, 0x63, 0xfc, 0x1

a, 0x49, 0x2c, 0xf0, 0xce, 0x36, 0x7e, 0xe7, 0xe5, 0xb5, 0xa1, 0x7a, 0xc9, 0xee, 0x1c,

0xa5, 0x7b, 0xd4, 0x9b, 0x41, 0xd, 0xa8, 0x5, 0x84 , 0xb1, 0x93, 0x2f, 0xbe, 0xc5, 0xb,

0xeb, 0xe1, 0xaf, 0x9a, 0x80, 0 x8d, 0x4c, 0xe4, 0xfb, 0x9e, 0x89, 0x24, 0x2a, 0x83,

0x9, 0x94, 0x53, 0xbc, 0x5f, 0xa9, 0xc7, 0x75, 0xb0, 0x30, 0x1f, 0xb4, 0xdb, 0xf8, 0

xc3, 0xb9, 0xd2, 0xfe, 0x11, 0xed, 0x59, 0xf9, 0xe8, 0x1, 0xe3, 0xe6, 0x62, 0x14)

Appendix C

In all the experiments, the operators are selected uniformly at random from the
pool of available operators presented next.

PMX Crossover. First, two crossover positions are chosen randomly, and
the segment between them from the first parent is copied to the offspring. Then,
starting from the first crossover position check elements in that segment of second
parent that have not been copied. For each of those elements i, check the offspring
to see what elements j has been copied in its place from first parent.Place those
values i into the positions occupied j in parent 2. If the place occupied by j in
parent 2 has already been occupied in the offspring by an element k, put i in the
position occupied by k in parent 2. After all the elements in crossover segment
are finished, the rest of the offspring is filled from parent 2 [30].

PBX Crossover. In this operator first the values in random positions from
the first parent are copied to the same positions in the offspring. Next, values
from the second parent that are not present in the offspring are copied to it
starting from the beginning of the offspring [30].

OX Crossover. Two crossover positions are chosen at random, and the
segment between those positions is copied from the first parent to the offspring.
Starting from the second crossover point in the second parent, copy unused values
to the offspring in the order they appear in the second parent, wrapping around
at the end of the list [30].

Inversion Mutation. In this operator, first two positions are chosen at ran-
dom. Then, the segment between those 2 values are written in reverse order [30].

Insert Mutation. In this operator two positions are selected at random
and then the value from one of those position is moved to be next to the other
position. Values in the segment between are shuffled to make room for value to
be moved [30].
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