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Abstract

The modern, always-online world relies on numerous electronic devices. En-
suring the unobstructed operation of electronic transactions is quintessen-
tial yet non-trivial to achieve. Many devices operate in particularly
resource-constraint environments, often trying to achieve security with
very narrow margins.

Physical attacks such as side-channel cryptanalysis and fault injection
pose a serious threat against the security of embedded devices. Techniques
such as Differential Power Analysis and Template Attacks exploit the
power consumption and electromagnetic emission of embedded targets,
compromising cryptography in otherwise secure mathematical ciphers.

To meet the security needs of our society, numerous countermeasures have
been deployed against such attacks. Masking and shuffling rank among the
most popular choices, yet they do not come for free. Very often the cost
of deploying them effectively makes the implementation cost prohibitive,
leading to situations where only partially secure products are used in the
field. To address these issues, this thesis puts forward the following three
contribution points.

First, it develops efficient masking and shuffling countermeasures. To
improve the performance of these countermeasures it relies on high speed
assembly-based implementations that push the limit of ARM and AVR
devices. At the same time it investigates closely the actual security level
of such devices, aiming to remove leakage effects that hinder their full
deployment.

Second, this thesis works toward a closer understanding of the various coun-
termeasures against physical attacks. Instead of viewing countermeasures
as isolated components, it promotes a holistic approach that examines
the interactions between countermeasures, security and performance of a
secure cryptographic implementation. Through information-theoretic anal-
ysis, we establish the tradeoff between randomness and masking/shuffling
countermeasures, culminating in Reduced Randomness Masking/Shuffling
schemes. In the same spirit, we link the fault injection resistance of du-
plicated ciphers, infective protection and build-in fault detection to the
side-channel security of a device. The tradeoffs established can assist
the countermeasure designer prior deployment and result in effective, yet
affordable security.



Third, this thesis integrates new attack vectors to the existing arsenal of
the side-channel adversary. It provides a close inspection of location-based
attacks on ARM devices and assesses their real-world impact. Concurrently,
it takes steps towards modeling location leakage, aiming to understand its
root cause and once again to establish tradeoffs between attack parameters
and attack impact.



Samenvatting

De moderne wereld die altijd online is, vertrouwt op vele elektronische apparaten.
Het is gebruikelijk dat elektronische transacties onbelemmerd uitgevoerd worden.
Echter is dat niet vanzelfsprekend. Veel apparaten functioneren met beperkte middelen,
waardoor ze vaak minimaal worden beveiligd.

Fysieke aanvallen zoals side-channel cryptoanalyse en fault injection zijn een se-
rieuze dreiging voor de beveiliging van ingebouwde apparaten. Technieken zoals
Differential Power Analysis en Template Attacks maken gebruik van het stroomver-
bruik of elektromagnetische emissie van de ingebouwde apparaten. Hierdoor wordt
cryptografie die wiskundig veilig is onbetrouwbaar.

Om te voldoen aan de hedendaagse behoefte aan beveiliging van elektronische
apparaten zijn er verschillende maatregelen ingezet tegen zulke aanvallen. Maskeren en
rangschikken behoren tot de meest populaire maatregelen, toch zijn deze niet zonder
kosten. Vaak zijn deze kosten zo hoog dat het niet uitvoerbaar is om ze volledig in te
zetten. Er ontstaan dan situaties waarin producten worden gebruikt die slechts voor
een deel zijn beveiligd. Om deze problemen aan te pakken, komen in dit proefschrift
de volgende drie bijdragen aan bod.

Ten eerste worden in dit proefschrift efficiënte maatregelen voor maskeren en
rangschikken ontwikkeld. Er worden op assembly gebaseerde implementaties gebruikt
die de grenzen van ARM en AVR apparaten verleggen. Daarnaast belemmeren beveilig-
ingslekkages de maatregelen. Daarom wordt tegelijkertijd het beveiligingsniveau van
de apparaten onderzocht met als doel om de lekkages te voorkomen.

Ten tweede wordt in dit proefschrift toegewerkt naar een beter inzicht in de
verschillende maatregelen tegen fysieke aanvallen. In plaats van de maatregelen als
gëısoleerde componenten te bekijken, wordt met een integrale benadering gekeken
naar de interacties tussen de maatregelen, de beveiliging en de prestaties van een
beveiligde cryptografische implementatie. Door informatie-theoretische analyse stellen
we een afweging vast enerzijds tussen de kosten van willekeurige getallen en an-
derzijds maatregelen als maskeren/rangschikken. Dit geeft ”Reduced Randomness
Masking/Shuffling” als resultaat. In dezelfde trant voegen we de weerstand tegen
fault injection van gedupliceerd versleutelingsalgoritmes, infective bescherming en
ingebouwde detectie van fault injection samen onder de side-channel beveiliging van
een apparaat. De vastgestelde afwegingen helpen bij het ontwikkelen van nieuwe
maatregelen voordat ze worden toegepast. Dit resulteert in een beveiliging die effectief
en kosten efficiënt is.

Ten slotte integreert dit proefschrift nieuwe aanvalsvectoren in het bestaande
arsenaal van side-channel aanvallen. Het levert een nauwkeurige inspectie van op
locatie gebaseerde aanvallen op ARM apparaten en beoordeelt het daadwerkelijke effect.
Tegelijkertijd worden er stappen gezet naar het modelleren van op locatie gebaseerde
lekkages. Dit heeft als doel een beter inzicht te geven in de voornaamste oorzaak van
deze lekkages. Bovendien worden afwegingen vastgesteld tussen de aanvalsparameters
en het aanvalseffect.



Abbreviations

AES Advanced Encryption Standard
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Chapter 1

Introduction

“We don’t really know what electricity is, we merely know how to use it.”

Few names fit our modern era more aptly than the “age of information”. Historically,
information exchange, processing and storage are deeply embroidered in humanity’s
societal fabric and emerge in all conceivable communication means, ranging form
the oral tradition and collective consciousness of a society to a written alphabet
and its literary derivatives. More interestingly though, the 20th century, with the
advent of information technology, telecommunications and electronics, has emancipated
humanity from several historic barriers in information exchange, processing and storage.
Nowadays, information is unshackled by the limitations of human nature such as
proximity, limited storage capacity and erroneous memory. As a result, our modern,
always-interconnected society can daily deploy a huge number of digital transactions
to communicate, operate and thrive.

The “steam engine” driving this new wave of modernization is no other than
the infamous Internet of Things. Enabled by the low cost of electronics and the
wide-spread availability of networks, the Internet of Things is the process of enhancing
everyday objects such as identities, passports, transport cards, cellphones with internet
connectivity, data-processing and storage capabilities. Several industrial sectors,
including construction, logistics, agriculture, energy production/distribution and
automotive manufacturing, are already harnessing the transformative impact of IoT
on their production lines. The emerging paradigm is a globally connected world,
consisting of billions of device nodes. Resembling an intra-cerebral architecture with
billions of “brain cells”, every node communicates and interacts through thousands of
neural connections, powering our planet’s cortex.

However, close to every life-changing human invention lies the price of progress.
History has recorded several occasions where inventions caused rippling waves in
human society. For instance, the ancient story of the Tower of Babel vividly portraits
the invention of human languages, as well as its impact. A huge tower (or possibly a
metaphor for human progress and ambition) is constructed and attempts to reach the
sky, only to crumble under its own weight. Allegorically speaking, the story describes
how the invention of language had spectacular effects, yet it also caused confusion,



miscommunication and isolation between people talking in different languages. Fast-
forward to the modern era, the internet of things and the emerging online world had
huge positive impacts in our society. The price of progress in our era largely pertains to
the human security and privacy of this brave new world. The billions of interconnected
IoT devices contain our personal data and transactions, that is, our digital identity
and fingerprint. Should an attacker gain unauthorized access to our electronic life,
he use it to expose our personal communications, to fraudulently imitate us in the
online world or to simply deny us access to online services. More importantly, modern
business models rely heavily on surveillance capitalism methods that closely monitor
user preferences, map routes, purchase history in a constant struggle to accumulate
behavior surplus [225]. Thus the end user is under constant pressure by vested interest
to reveal personal information and make it subject to data rendition. To avoid another
tower collapse we need to make sure that our multi-faceted online identity remains
secure and safe from prying eyes.

Our ally in this effort is the science of cryptography. History offers an abundance
of examples where cryptographically protecting secrets was crucial to geopolitical
interests, as seen in the ancient world and the Ceasar cipher [1], in the middle-ages
and the Da Vinci devices [2] and even in modern warfare with Enigma [3]. Through
the ages, the core principles of cryptography remained immutable. A message sender
and a message receiver want to communicate securely over an insecure channel and
keep their communication secret from adversaries. In an era were billions of devices
constantly communicate over insecure channels, the need for efficient and effective
cryptography is even more dire.

The mathematical foundations of cryptography rely on on computationally hard
problems. Most encryption techniques constitute of an algorithm that receives an input,
known as plaintext and generates an output, known as ciphertext. Cryptanalysis
studies such algorithms, trying to invert the encryption process and recover the
plaintext from the ciphertext. To this end, various tools are being deployed, including
linear and differential cryptanalysis [33, 143], impossible differentials [121], integral
cryptanalysis [67], slide attacks [35] and others. Every technique works under the
common “black box” assumption, that is the adversary can observe the input and
output of a cryptographic algorithm. In other words, the internal algorithm states are
fully opaque and the adversary is not privy to any inside information.

As mentioned, every cryptographic algorithm, also known as cipher, begins its
existence as an abstract mathematical structure that is meant to be cryptanalyzed.
Thorough work in the the “black box” model ensures that the cipher is adequately
protected for such usage. The next natural step in the cipher’s lifecycle is a real-world
implementation. The cipher can get deployed in any electronic device, ranging from
supercomputing clusters, to laptops, cellphones, even smartcards and RFID tags.
Transforming a purely mathematical object to an actual implementation however
comes with a price: every device has physical characteristics that are now observable
by the adversary. The execution time, the power consumption, the electromagnetic
emission and other features of a device are new tools for the adversary which allow
him a blurry yet potent view in the internal states of the cipher. All these physical
characteristics form a conglomerate of attack vectors that gives birth to side-channel



analysis and the so-called “grey box” model.
Before attempting to bind the concept of side-channel analysis to a formal defini-

tion, we opt to attach a more aesthetic feeling to it, using various examples. In general,
human intellect is often struggling to capture directly the truth behind the laws of
the physical world. Interestingly, we excel much better at learning through interac-
tions, as any interaction in the physical world leaves a trace behind. Learning and
understanding through interaction is a very common scientific pattern. For example,
Michael Faraday developed his understanding of electromagnetism by constructing
inductive electric motors. Confirming the quote in the beginning of this chapter, the
underlying physical phenomenon (electromagnetic induction) was unclear. However,
Faraday managed to aptly understand it by a fitting experimental interaction. That
is, an interaction produced a side-channel that shed light upon the laws of physics.
Naturally, interactive experiments do not capture the laws of physics in their entirety,
yet they spearhead an ongoing process towards understanding. Sometimes discovering
the necessary interaction can be very hard. For instance, the properties of neutrinos
remained elusive for a long time, largely because of the particle’s weak interaction with
matter. Physicists constructed neutrino detectors by deploying huge water tanks that
are able to capture the Cherenkov radiation emitted when an incoming neutrino creates
an electron or muon in the water. Through this strange side-channel neutrinos were
understood much better, prompting more interactive experiments. Not surprisingly,
natural life is full of interactions and side-channels. Human beings can comprehend
emotion and empathy indirectly, often through subtle hints, facial expression and
body posture. Flora and fauna are unable to keep track of calendar days, yet a slight
increase in temperature, a different breeze of air or an early sunrise are side-channels
telling them that spring is coming.

Going back to side-channel analysis, we provide the following definition:

Side-channel analysis is the art of uncovering the truth through interactions

The definition is fairly generic and resembles the research methods of most natural
sciences. In our case, the “truth” is the hidden internal state of a cipher. The side-
channels that we use stem from the way ciphers interact with physical devices. Time,
electrical power, electromagnetic/photonic emission, sound and others are simply
mediums that convey information about such interactions. They byproduct of such
interaction is often referred to as “side-channel leakage”.

1.1 Motivation & Research Questions

This thesis is titled “Interactive Side-Channel Analysis”. On a surface level, its goal is
to exploit the plethora of interactions between mathematical ciphers and the physical
world, hence the adjective “interactive”. Any successful interaction results in an
insecure implementation and prompts research towards side-channel countermeasures,



i.e. methods that eliminate such interactions. The majority of novel side-channel
research tries to identify new unexpected interactions (new attacks) and to fully
utilize existing interactions (maximized leakage exploitation). Ultimately, it tries to
make such interactions very hard to exploit, resulting in secure devices (side-channel
countermeasures). This thesis provides advances in all these three directions.

However, this is not the sole reason behind the “interactive” titling. Side-channel
analysis and countermeasures are not only the byproducts of interaction. Instead, they
actively interact with other security components such as Random Number Generation
and Fault Injection protection. Even more, they showcase internal interactions, i.e.
different types of side-channels such as data and location channels interact between
themselves. Thus, on a deeper level the goal of the thesis is to also demonstrate the
interactions between side-channel analysis and other crucial parts of implementation
and security. This thesis demonstrates and analyzes such interactions aiming to
understand hardware security in a holistic sense, to provide efficient and effective
countermeasures and to offer a plethora of design options to the engineers of secure
devices.

So far, several attacks make use of side-channel interactions, including timing
attacks [29], Differential Power Analysis [125], Template Attacks [50], Soft-Analytical
Side-Channel Attacks [215], Neural Network attacks [138] and others. Concurrently
multiple countermeasures such as masking [49], shuffling [216], special logic styles [99],
clock jitter and leakage-resilient cryptography [199] have attempted to thwart side-
channel leakage problems. Motivating our study, we observe that side-channel attacks
have been widely deployed against real products, such as the Mifare product used
(among others) in the Dutch OV-chipkaart [4, 193], doors that use electronic lock
mechanisms [83], Intel processors [123] the Secure Socket Layer network protocol [42],
Wolf SSL [182], even allegedly secured memory units [14]. At the same time, coun-
termeasures are deployed in Android and Apple smartphones to protect the NFC
payment systems, debit and credit cards use masking and shuffling to prevent cloning
and Ledger wallets employ protection to prevent unauthorized access to bitcoins.

Having established the core points of Interactive Side-Channel Analysis, we proceed
to describe the specific research questions behind this work.

1. Side-channel countermeasure implementation. One of the most widely-
spread countermeasure against side-channel attacks is the masking countermea-
sure, considered for either software or hardware (threshold implementations).
Starting from multi-party computation, masking is applied on the algorithmic
layer of a cipher and is capable of randomizing the intermediate states of its
computation. Although several masking schemes have been proposed, higher-
order masking is still perceived by the semiconductor industry as a potent yet
costly countermeasure. Thus, the interaction between masking countermeasures
and implementation cost leads to the following research question:

Can we implement efficient high-speed masking schemes in modern microcon-
troller units?

2. Countermeasures and the physical layer. Masking countermeasures against



side-channel analysis are usually developed with a theoretical model in mind.
However, the often unpredictable electrical characteristics of the physical layer
do not strictly adhere to the model, causing masking to underperform. Thus,
the interaction between masking countermeasures and the physical layer cost
leads to the following research question:

Can we understand and eliminate the impact of the physical layer on deployed
masking countermeasures?

3. Side-channel analysis and random number generation. Countermeasures
against SCA are inherently reliant on random number generation in order to
provide protection. This often involves a costly overhead for implementation
that can render countermeasures inefficient. Exploring ways to “recycle” existing
randomness can assist towards cheaper solutions. Thus, the interaction between
side-channel analysis and random number generation leads to the following
research questions:

Can we use randomness more effectively when protecting ciphers? Can we
establish the tradeoff between side-channel resistance and RNG overhead?

4. Side-channel and fault injection resistance. Along with side-channel anal-
ysis, another large class of attacks relies on injecting fault during a cipher
computation. Protecting against this class requires often redundant compu-
tations, which in turn can enhance existing side-channel leakage. Protecting
against both SCA and FI attack classes is non-trivial since we need to balance
between opposing forces. Thus, the interaction between side-channel analysis
and fault injection countermeasures leads to the following research question:

Can we establish the tradeoff between side-channel and fault-injection resistance?

5. Data and location side-channels. Hardware security research is constantly
trying to discover unknown vulnerabilities. Location-based attacks are more re-
cent side-channel vulnerabilities and originate from the fact that chip structures
such as memory and register file emit distinctive information when accessed.
The interactions resulting in location leakage as well as the interaction between
standard data-based and location-based leakage lead to the following research
questions:

Can we successfully exploit location leakage in modern devices? Can we analyze
data and location leakage jointly?

All the above research questions culminate in the following general question:

Can we effectively understand the interactive links between side-channel analysis,
implementations, the physical layer, random number generation, fault injection and
location-based attacks? Ultimately, can we use these interactions to improve security?



1.2 Thesis Organization

Chapter 2 provides an overview of basic profiled and non-profiled side-channel attacks
such as correlation power analysis and template attacks. In addition, it provides an
introduction to the masking and shuffling countermeasures. The chapter also describes
basic metrics used in side-channel analysis, including success rate and information-
theoretic approaches. Last, it discusses horizontal side-channel attacks, which is
the common denominator in most analyses carried out in this thesis. Moreover, it
practically demonstrates the necessity for such attacks by examining specific scenarios.

Chapter 3 improves the current state of the art by creating an efficient 2nd-order
masked implementation of PRESENT, showing that midrange ARM-based archi-
tectures (Cortex-M) can host masked implementations efficiently. In addition, it
demonstrates how the NEON vector unit on high-end ARM Cortex-A8 processors
can be used to obtain efficient masked AES implementations. Finally, the chapter
attempts to bridge the gap between theory and practice in masking countermeasures
in a twofold manner. First, it demonstrates potential out-of-model leakages in ARM
Cortex-M and Cortex-A architectures. Continuing, it identifies similar effects in
the ATmega163 and attempts to mitigate such problems by crafts the first (to our
knowledge) 1st-order masked implementation that is capable of resisting 1st-order,
univariate attacks.

Contribution of the author: Focusing on several microcontrollers, the author
has developed high-performance cryptographic implementations of secure ciphers,
merging the concepts of bitslicing and algebraic decompositions together with mask-
ing countermeasures. In addition, the author has performed power analysis attacks
against the developed implementations, analyzing the security level and root-causing
the side-channel leakage effects. The results of this effort are included in ”Bitsliced
Masking and ARM: Friends or Foes?” [70], ”Vectorizing Higher-Order Masking” [94]
and ”Mind the Gap: Towards Secure 1st-order Masking in Software” [161].

Chapter 4 describes low-randomness versions of standard masking and shuffling
countermeasures, which we refer to as Recycled Randomness Masking and Reduced
Randomness Shuffling respectively. The novel countermeasures reduce the RNG over-
head and establish a direct link between the randomness cost and the noisy leakage
security level provided by a countermeasure.

Contribution of the author: The author established the theoretical links between
randomness and masking/shuffling side-channel countermeasures. In addition, he
puts forward both a noise-based information-theoretic analysis and formal verification
methods for improved countermeasures. The results of this effort are included in ”Low
Randomness Masking and Shuffling: An Evaluation Using Mutual Information” [160].



Chapter 5 examines the tradeoff between fault injection resistance and side-channel
analysis resistance by investigating fault injection countermeasures and new cipher
structures with build-in fault injection protection. Using an information-theoretic
approach and the Hidden Markov Model, it examines n-plication and infective coun-
termeasures. Moreover, the chapter introduces FRIET, a fault-resistant cipher design
and employs a Soft-Analytical Side-Channel Attack to evaluate the impact of FI
resistance to side-channel analysis.

Contribution of the author: The author’s contribution is performing a theoretical
and practical side-channel analysis of duplication and infection countermeasures. In
addition, the author has analyzed the side-channel leakage of FRIET using soft-
analytical side-channel attacks, linking it to fault resistance. The results of this effort
are included in ”Instruction Duplication: Leaky and Not Too Fault-Tolerant!” [59] and
”Towards Lightweight Cryptographic Primitives with Built-in Fault-Detection” [190].

Chapter 6 investigates the fairly unexplored location-based leakage in the context of
modern microcontrollers. It provides simple spatial model that partially captures the
effect of location-based leakages and uses it to simulate different theoretical scenarios
that enhance or diminish location-based leakage. Continuing, it carries out the first
practical location-based attack on the SRAM of a modern ARM Cortex-M4, using
standard side-channel techniques, as well as neural network classifiers. Finally, it
investigate the recently proposed countermeasure of Boolean exponent splitting from
the perspective of location-based attacks. It present for the first time a hybrid attack,
where data leakage is combined with location leakage and analyze the countermeasure’s
effectiveness against it.

Contribution of the author: Motivated by experimental observations, the au-
thor has developed the theoretical model for location-based leakage. In addition he has
performed information-theoretic analyses and template-based attacks on various real
and simulated leakage scenarios. The results of this effort are included in ”Location,
location, location: Revisiting modeling and exploitation for location-based side channel
leakages” [7], ”Location-based leakages: New directions in modeling and exploiting” [8]
and in ”Boolean Exponent Splitting” [209].

Chapter 7 summarizes our conclusions and provides an open discussion about the
future research directions on side-channel attacks and countermeasures.









Chapter 2

Preliminaries

2.1 Notation

This thesis uses the following concepts and notation to describe cryptanalytic side-
channel analysis experiments, quantities and any other related information.

� Symmetric cipher: is a bijective function parameterized by a secret key K,
an input plaintext In, computing a ciphertext C. Inverting the function is
computationally infeasible without the knowledge of the secret key K. Random
variables are denoted with capital letters and we use them to describe such
discrete quantities. Instances of random variables and constant values are
denoted with lowercase letters, i.e. k, in, c. The domain of these discrete random
variables is denoted using calligraphic letters, i.e. K, I, C. Naturally the domain
contains all possible values of these variables.

� Advanced Encryption Standard : AES-128 is a symmetric cipher operates on
a single block of data known as the state. Each AES round is composed of 4
operations: AddRoundKey, Sbox, ShiftRows and MixColumns [69].

� PRESENT and RECTANGLE cipher: Lightweight symmetric ciphers operating
on 64-bit blocks of data. [36,224]. Both include substitution and permutation
operations in every round.

� Side-channel experiment: the experimental process under which an analyst
acquires side-channel data information by observing the timing, power supply,
electromagnetic emmission or any other covert channels. The analysis goal is
usually to learn information about a key-dependent intermediate variable, often
denoted as V .

� Traces: the side channel observables. Each trace is a vector consisting of multiple
time points and usually corresponds to a single cipher execution. Traces are
denoted with capital bold letters that are used for random variable vectors and
matrices. Variable L denotes the leakage of a trace and has domain L which
usually is (−∞,∞). Initially all traces are analog signals. The most common



approach to process and analyze them is a digitization process, where the analog
signal is converted to its digital equivalent. Typically, we use the Nyquist rate,
thus we digitize at a sampling rate (samples/sec) that is equal to at least twice
the core frequency of our signal.

� Samples: the discretized points in time of a trace. Samples are denoted with
subscript notation in a trace, i.e. l1, l2, . . . , l1000 for a trace with 1000 samples.

� Leakage function: the assumed model that defines the side-channel behavior
of a key-dependent intermediate variable. The leakage function can follow the
identity model, the Hamming weight, the Hamming distance model or any other
custom behavior.

� Statistical distributions: the specified random variables follow certain statistical
distributions. This is denoted as X ∼ Distribution. The notation Unif({a, b}),
Bern(p), Binomial(n, p) and N (µ,σ2) denotes random variables with uniform,
Bernoulli, binomial and normal probability distributions respectively. Parameter
p denotes the probability of Bernoulli/binomial trials and µ,σ2, denote the mean
and variance of the normal distribution. The set {a, b} denotes that the discrete
uniform distribution can receive value a or b equiprobably. The notation E[·],
V ar[·] and H[·] describes the expected value, variance and entropy of a random
variable. Notation Pr(·) implies the probability of an event/random variable.

� Side-channel attack: The analysis process during which the attacker tries to
identify the correct key via side-channel experiments. Typically, it involves the
process of distinguishing between different key guesses.

� Success rate: Typically, a side-channel attack attack is deemed successful if
the side-channel distinguisher ranks the correct key first among all key guesses.
Expanding this, one can also define the rank of the correct key i.e. after the
distinguisher ranking, he can observe how far away is the correct key from the
top position.

2.2 From Standard to Horizontal Attacks

There exist several ways to classify the plethora of side-channel attacks and techniques.
Common classification options consider whether the adversary has access or not
to an open device and therefore partition SCA to profiled and unprofiled attacks.
Other classification attempts split techniques based on the distinguisher they use,
often separating between standard statistical distinguishers (comparison-based or
partitioned-based) and more advance distinguishers based on information theory,
machine learning and deep learning. Likewise, classifications split techniques based
on the nature of the side-channel used, resulting in timing [29, 124], power [125],
electromagnetic [105], photonic [184] and others.

This thesis is closely linked to the concept of horizontal side-channel attacks
therefore it necessitates a more modern classification attempt. Ergo, we aim to
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Figure 2.1: Standard (in black) and horizontal (in blue) attacks over time.

present the spectrum of side-channel techniques from the viewpoint of horizontality.
Horizontality can be simply described as the effort to maximize the information
extracted from a side-channel trace. In fact, ranking techniques based on horizontality
is following closely the evolution of side-channel analysis over the years, i.e. it
demonstrates the progress of the whole side-channel community in extracting as much
leakage as possible and improving the attack capabilities of such cryptanalysis.

Researcher’s have implicitly used various concepts of horizontality to attack public-
key cryptography. Fouque et al. [87] and later Homma et al. [106] came up with
techniques that performed side-channel cryptanalysis exploiting the noisy leakage
throughout the whole execution of a scalar multiplication or modular exponentiation.
The term ‘horizontal attack’ first appeared in the work of Clavier et al. [56], becoming
the first conscious attempt to exploit this dimension. Through horizontal attacks
they were able to exploit multiple intermediate values, increasing the effectiveness
of their attack. In a concurrent fashion, researchers implicitly used horizontality to
delve deeper into the leakage of a device. Instead of relying on a single sample for
their attack, Chari [50] opted for multivariate leakage models that exploit multiple
trace samples, increasing once again the effectiveness of the attack. The majority
of horizontal techniques can be viewed as an extension that aims to model multiple
samples and combine multiple intermediate values. A timeline of standard (in black)
and horizontal (in blue) side-channel attacks is visible in Figure 2.1. We continue with
a short description of the horizontal and non-horizontal techniques that are relevant
to this work.

Differential Power Analysis. DPA is the earliest side-channel attack and the
first to link the instantaneous power consumption with the intermediate values of any
cryptographic algorithm [125]. It utilizes a simple leakage model, namely that 0-valued
bits in the cryptographic implementation leak differently compared to 1-valued bits.
DPA is a univariate technique that typically targets a single intermediate value of the
cipher. Therefore it can be classified as a non-horizontal attack.

Technique description. Let a key dependent intermediate value represented by



random variable V . DPA distinguishes the leakage of the device L when the value
V is 0 or 1 i.e. we observe (L|V = 0) and (L|V = 1). Given input I and key guess
Kg, the adversary computes a predicted intermediate value Vg. in For instance, in the
case of AES, Vg = Sbox(I ⊕Kg)), where Sbox() is the typical 8× 8 AES Sbox.

Subsequently, the traceset L is split in two sets: one where Vg = 0 and one where
Vg = 1. The adversary computes the difference of means between the 2 sets, namely
δ. For the correct key guess (and thus a correct set splitting), δ increases with the
number of traces, while for incorrect key guess it tends to small values.

δ = E[L|Vg = 0]− E[L|Vg = 1] (2.1)

Correlation Power Analysis. Being one the most popular side-channel distin-
guishers, CPA [41] was among the first to introduce the concept of a leakage model
and link the power consumption of the device to the Hamming weight of a single
intermediate value or to the Hamming distance between intermediate values. CPA
is an instance of DPA, which although being univariate, it tends to exploit more
information since it can model the leakage of a full device register/bus instead of a
single bit of that register/bus.

Technique description. In its first version, CPA relates the leakage of the device
L with the Hamming weight of the intermediate value computed or Hamming distance
between intermediate values, i.e. HW (V ) or HD(V1,V2) = HW (V1 ⊕ V2). Given
input I and key guess Kg, the adversary computes a predicted intermediate value Vg
and in the Hamming weight case, computes the HW (Vg). Subsequently it compares
the traceset L with the prediction using Pearson correlation ρk(L,HW (Vg)) and ranks
the keys based on that. The correlation formula follows below.

ρk(L,HW (Vg)) =
cov[L,HW (Vg)]√

V ar[L] · V ar[HW (Vg)]
(2.2)

TVLA Methodology. The leakage detection methodology [60] is not a direct
attack technique, yet it is also very often deployed in evaluations and even considered a
requirement for certain security certification processes. The technique prioritizes leak-
age detection over leakage exploitation, speeding up evaluation. Although multivariate
TVLA techniques exist, their adoption remains still at a nascent stage, therefore
TVLA is a non-hotizontal technique.

Technique description. In detail, TVLA employs the random vs. fixed, non-
specific, 1st-order t-test. That is, first it perform a random vs. fixed acquisition
and obtain two distinct tracesets Sfixed and Srandom, under the same encryption key.
The input plaintext for Sfixed is set to a fixed value, while for Srandom, the input is
uniformly random. The implementation receives the fixed or random plaintext in a
non-deterministic and randomly-interleaved way, as recommended by Schneider et al.



[185]. Following the data acquisition, the 1st-order t-test will assess whether the two
sets Sfixed,Srandom stem from the same population, using the following statistical test.
Parameters µx and σ2

x are the estimated mean and variance of set x; n and m denote
sizes of sets Sfixed and Srandom respectively. The null hypothesis Hnull is rejected at
a given level of significance α (often set to 0.99999), if |w|> tα/2,υ, where tα/2,υ is
the value of the Student t distribution with υ degrees of freedom. In the evaluation
context, rejecting Hnull implies leakage detection, i.e. potential evidence of an insecure
device.

Hnull : µfixed = µrandom

Halt : µfixed 6= µrandom
(2.3)
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(2.4)

Template and Machine Learning Attacks. In many ways, template attacks
put forward an early version of horizontal side-channels. The first version of TA uses
a more complex leakage model (multivariate normal distribution), i.e. L ∼ N (µ, Σ),
although any probability distribution is elegible for such an attack. To perform a
TA, the adversary needs to select one or multiple sample points of the traceset where
leakage is detected. The so-called points of interest are used during template training
part of the mean vector (µ) and covariance matrix Σ.

TAs mark a divergence from the standard univariate attack scenario and the expan-
sion towards more informative leakage models. Extracting the more key information
from the leaky traces, lies essentially in the modeling capabilities of the template
attack. A large amount of work is dedicated towards identifying good POIs and
compressing the time samples such that the template can be build with a reasonable
amount of data [9, 147].

In the same spirit, the advent of linear regression [183], improved dimensionality
reduction methods [24,145] and modern machine learning techniques [107,132] often
manages to increase the horizontal factor and improve the success rate of our attack
or reduce the data complexity during the training phase. Such enhanced statistical
techniques enable stronger attacks such as Online Template Attacks by Batina et
al. [22], which manages to connect standard templates to horizontal attacks, since
it uses TAs to identify horizontally same-data computations and attack ECC in a
single-trace. Currently, the horizontal trend is still vibrant, since neural networks and
deep learning techniques are widely used in order to detect POIs, improve attacks and
extract more information via more sophisticated leakage models.

Technique description. Template attacks, including any machine learning or
deep learning extensions, follow the same attack path. First they make use of an
open device in order to profile certain instructions or cryptographic implementations,



i.e. the capture a training dataset. Subsequently they use this training dataset
to create a model. Standard template attacks rely on a probabilistic model whose
parameters are estimated using the training dataset. In other words, TA will estimate
the statistical distributions P̂ r(L = l|K = k) for all k ∈ K. Other techniques
may use different approaches such as random forest training, neural network weight
estimation etc. Once the training is complete, templates use a maximum likelihood
distinguisher in order to match an unknown leakage to one of the known profiles.
Assuming unknown leakage vector l and key Kwith domain K, the TA will compute
Pr(L = l|K = k) for all k ∈ K and select the key candidate k with the highest
probability. Other techniques may produce scores that reflect the same process. The
probability computation follows below and is a direct application of the Bayes rule. In
practice the probability computation gets replaced by the logarithm of the probability
which simplifies computation and can solve numerical issues in higher dimensions [54].

Pr(k|l) =
Pr(l|k)∑

k∗∈K Pr(L = l|K = k∗)
(2.5)

Soft Analytical Attacks. Among the strongest horizontal attacks are the soft-
analytical attacks proposed by Veyrat-Charvillon et al. [215]. SASCA improves our
exploitation capabilities by considering more than a single intermediate value to attack.
Instead, it observes several leaky intermediates V1, . . . ,Vm and the corresponding leak-
age L1, . . . ,Lm. Subsequently it constructs a graph that combines all such information
while taking into account the exact implementation of the cipher. Several variants of
SASCA exist, usually attempting to balance the effort between training an informative
model and keeping the training complexity reasonable.

Attack description. SASCA can be viewed as an enhanced template attack.
That is, in the first step all intermediate values V1, . . . ,Vm are profiled using templating
techniques. In the second step a factor graph is constructed, modeling the entirety
of relations between such values. Establishing the link between the intermediates is
enhancing the side-channel attack with extra observables: partially leaky intermediates
may not be informative enough on their own, yet once combined they improve the
attack’s success rate. This combination is performed via the Belief Propagation
algorithm [126] which iterates through the graph in order to inform nodes about the
behavior of their neighbors.

2.2.1 Information-Theoretic Framework

A core approach in side-channel evaluations is the set of several information-theoretic
measures that have been developed to assist the evaluator and provide insight into
the quantity and nature of the side-channel leakage. In this subsection we describe
the three core information theoretic metrics that are encountered throughout most
chapters. Namely we discuss the features and computation methods with regards to
Mutual Information, Perceived Information and Hypothetical Information.



Mutual Information. The core information theoretic metric is mutual infor-
mation [197]. MI(L;V ) quantifies the amount of information that the leakage L
conveys about the key-dependent intermediate V . To compute MI we need knowledge
of the true distribution of the leakage, i.e. we implicitly assume that we are aware
of the exact leakage model without any need for template building or any form of
distribution estimation. Naturally, this applies to theoretical scenarios, where the
evaluator attempts to gauge the impact of certain leakage models with a specific case
in mind. MI computations essentially implies perfect modeling capabilities and perfect
matching between the built model and the leakage of the target during the attack
phase.

MI(L;V ) = H[V ] +
∑
v∈V

Pr[v] ·
∫

l∈Ln

Pr[l|v] · log2 Pr[v|l] dl,

where Pr[v|l] =
Pr[l|v]∑

v∗∈V Pr[l|v∗]
(2.6)

.
Perceived Information. To turn MI into a more flexible metric, Renauld

et al. [178] put forward a version that captures the imperfections of a real-world
experiment. PI alters MI in the two following ways. First, PI relies on the estimated
statistical distribution of the leakage (instead of the true distribution), i.e. it factors
in any possible modeling errors that are caused by template building with limited
sampling/datasets. At the same time PI compares the estimated distribution against
the true leakage distribution of the device-under-test, that is against the sampled
leakage obtained from the device. Thus, it can also factor in assumption errors that
are caused when template building has incorrect modeling assumptions, leading to
imperfections that reduce the success rate of the side-channel technique. Unlike MI,
PI can take negative values when the templating process has errors, demonstrating
that the attack is incapable of key recovery.

PI(L;V ) = H[R]−Htrue,model[L|V ] = H[V ]+
∑
v∈V

Pr[v]

∫
l∈Ln

Prtrue[l|v]·log2Prmodel[v|l] dl

where Prmodel[v|l] =
Prmodel[l|v]∑

v∗∈V Prmodel[l|v∗]
, Prtrue[l|v] =

1

ntest
,ntest test set size

(2.7)

Hypothetical Information. Hypothetical information bears similarities to both
PI and MI. Like PI, HI is a real-world metric that relies on estimated statistical models
of the leakage. Unlike PI, HI compares the estimated model against itself, i.e. it the
amount of information that would be revealed by hypothetical data following the
model distribution [115]. Like MI, HI has a non-negative value, so it can be viewed as
it’s real-world counterpart.



HI(L;V ) = H[V ] +
∑
v∈V

Pr[v] ·
∫
l∈L

P̂ rmodel[l|v] · log2P̂ rmodel[v|l] dl,

where P̂ rmodel[v|l] =
P̂ rmodel[l|v]∑

v∗∈S P̂ rmodel[l|v∗]
(2.8)

2.3 Countermeasures Against Side-Channels

Throughout this work we concentrate our efforts towards the two most important
types of protection against side-channel attacks: masking and shuffling. These two
techniques, in conjunction with noise, are able to provide security to a cryptographic
implementation and demand stronger adversarial techniques to bypass. Both can be
implemented on the algorithmic layer of cryptography. Thus, they do not rely on
specialized electrical/electronic components and can be easily applied both in software
and in hardware.

2.3.1 Masking

Chari et al., Goubin et al. and Messerges [49, 90, 148] were the first to suggest
randomizing intermediate values with a secret sharing scheme, forcing the adversary
to analyze higher-order statistical moments. Stemming from these, research has
developed numerous masking schemes that use various algebraic operations to split the
secret value into shares. Common choices for sharing the secret include multiplication,
modular addition and affine transformations and others.

The most prevalent choice is no other than Boolean masking, predominantly
popularized due its strong performance numbers. Analytically, a dth-order secure
Boolean masking scheme splits a sensitive value x into d + 1 shares (x0,x1, ..., xd), as
shown below.

x = x0 ⊕ x1 ⊕ · · · ⊕ xd
The shares (x0,x1, ..., xd) are also referred to as the (d+ 1)-family of shares cor-
responding to x [180]. In a given (d + 1)-tuple of intermediate values, we let
random variable S be the sensitive (key-dependent) intermediate value under attack
and let random variables M0, . . . ,Md−1 be the masks used to protect the sensitive
value. The leakage of a (d+ 1)-tuple is described using the following random vector:
L = (LS⊕d−1

i=0Mi
,LM0 , . . . ,LMd−1

)+N, where LS⊕d−1
i=0Mi

= Lid (S⊕M0⊕· · ·⊕Md), LMi
=

Lid (Mi), 0 ≤ i ≤ d− 1 and N is a (d+ 1)-dimensional random vector representing
Gaussian noise. We assume independent and equal noise σ2 in every sample of the
tuple.

Assuming sufficient noise and a specific leakage function, it has been shown that
the number of traces required for a successful attack grows exponentially w.r.t. the
security order d [49], i.e. masking performs noise amplification. Analytically, assuming
that the masking shares leak independently and follow normal distribution N (µ,σ2),



Chari et al. [49] demonstrated that at the number of traces N required to distinguish
with probability p between distributions (L|S = 0) and L|S = 1) satisfies the following
inequality.

N ≥ σ(d+4logp/logσ)

This core result has solidified the resistance of masking schemes against side-
channel attacks. Retrieving information about the secret becomes exponentially
harder rendering it popular choices to countermeasure designers and implementors.
Corroborating this core security notion, several additional security definitions have
been used to specify the formal security properties of a masking scheme, and we revisit
the most relevant below.

� Probing-secure scheme. We refer to a scheme that uses certain families of shares
as t−probing-secure iff any set of at most t intermediate variables is independent
from the sensitive values [111].

� Non-interfering scheme. We refer to a scheme as t−non-interfering (t−NI) iff
any set of at most t intermediate variables can be perfectly simulated with at
most t shares of each input [19].

� Strongly non-interfering scheme. We refer to a scheme as strong non-interfering
(t−SNI) iff any set of at most t intermediate variables, where t1 are on the
internal variables and t2 on the output variables, can be perfectly simulated
with at most t1 shares of each input [19].

2.3.2 Shuffling

The shuffling countermeasure results in spreading information over n different points
in time, according to a random permutation Pn [181]. The permutation Pn is defined
as a vector (P0, . . . ,Pn), where Pi represents the new position of element i and thus
Pn is defined over the set of all possible n-dimensional permutations Pn. For instance,
assume two independent variables X = (X0,X1) that leak L = (LX0 ,LX1) at different
points in time. The shuffling scheme will generate a 2-dimensional permutation P2

s.t. LX0 =Lid(XP0) + noise and LX1 =Lid(XP1) + noise. Charvillon et al. [216]
have analyzed the security provided by shuffling, in addition to investigating several
implementation techniques. We will refer to a permutation that shuffles n independent
operations of a specific cipher layer as P

{o1,...,on}
n

Similar to masking, applying the shuffling countermeasure implies a non-negligible
randomness cost. Specifically, generating a permutation for shuffling k independent
operations of the same type requires k ∗ dlog2(k)e random bits, using a slightly-biased
version of the Knuth shuffle algorithm [122,216]. In a practical scenario, shuffling only
16 AES Sboxes requires 640 random bits in total1. In order to deal with this RNG
overhead, previous work on the shuffling countermeasure opted to reduce the amount

1The cipher runs for 10 rounds, permuting 16 independent operations of the same type (Sbox)
per round. Every permutation requires 16 ∗ dlog2(16)e random bits.



of possible permutations (random start index), to shuffle only in selected rounds
(partial shuffling) or to use non-homogeneous shuffle patterns, where the amount of
possible permutations varied between cipher layers [103,181].

2.4 Three Cases in Favor of Horizontal Attacks

The contributions of this thesis are largely possibly due to the strong potential and
improved exploitation capabilities offered by horizontal techniques. In Chapters 3,
4, 5 and 6 several attack and defense mechanisms are examined through the lens of
horizontality, in order to provide close-to-optimal leakage analysis and in order to
establish a strong, yet realistic adversarial model.

However, the side-channel literature has put a large amount of effort in univariate
attacks, to the extent that side-channel analysis is largely considered a synonym
of CPA. The relative ease, the straightforward application and unprofiled nature
of CPA made it the de facto technique for side-channel analysis. On the contrary,
template attacks (and as a result soft-analytical attacks) prompt more lengthy POI
investigations and often involve less straightforward leakage models. Moreover, the
profiled nature of templates and SASCA give rise to profile transferability issues [53].
All these technical difficulties often result in analysts questioning their effectiveness
and applicability.

This section attempts to put an end to the reluctance against such techniques by
discussing 3 real-world scenarios where horizontality plays a major role in deducing
the correct result. More importantly, in all scenarios, constraining oneself to univariate
techniques can result in partially correct or even misleading results. All three cases
involve in some way side-channel information, yet not all three are limited to the
standard cryptographic scenario of key-recovery through leaky observables.

2.4.1 Confusion coefficient, transparency order and cipher
structure as a countermeasure

The first scenario under discussion is set in the classic side-channel context of leaky
ciphers and key recovery. In particular, the literature contains several works have
attempted to model the side-channel resistance of a cryptographic implementation.
Prouff [169] and Fei et al. [86] were among the first to model the side-channel properties
of cryptographic components, resulting in metrics such as the transparency order of a
Boolean function and the confusion coefficient of a structure. A natural next step of
the community was to try identifying structures and functions that possessed good
side-channel resistance properties. The need for low-cost resistant implementations led
several research lines towards modified 8×8 and 4×4 Sboxes [165,166]. Such structures
were similar to existing Sboxes regarding linear and differential cryptanalysis, yet
demonstrated improved numbers regarding the confusion coefficient.

Testing these Sboxes in theory and practice confirmed such intuition. Should an
adversary opt to perform CPA on the Sbox output of a cipher (as is very often the



Figure 2.2: Constructing new AES-like Sboxes with improved confusion coefficient
and comparing to the original Sbox.

common practice), he would observe increased side-channel resistance. Figure 2.2
aptly described the effect of such structures.

However, all such Sboxes had a very specific univariate adversary in mind. What
was not considered instead was a multivariate advesary that could observe the (possibly
profiled) leakage of key addition operations, internal Sbox computations and other
bit/byte permutation operations that revealed useful information. Structures with
enhanced confusion/transparency are in fact a prime target for horizontal attacks.
Moving only slightly beyond the standard CPA scenario can potentially diminish the
resistance gain by including more leaky observables and by using more informative
leakage models. Sticking to the standard CPA scenario can lead to slightly misleading
results about the security of a device.

2.4.2 Side-channel based intrusion detection systems

The second scenario under discussion condisers embedded devices, albeit in a non-
cryptographic context. Analytically, we consider an embedded system that is part of
any critical infrastructure. The system typically consists of an industrial control system
that is in direct control of a process, such the water level control of a hydroelectric plant,
the power grid distribution of an electric company or even the uranium enrichment
process of a nuclear facility. Such embedded systems are good targets for any malware
that aims to corrupt the industrial process and possibly cause peril.

The historic lack of security in these devices led to research towards unconventional
protection mechanisms. The work of Van Aubel et al. [10] developed a side-channel-
based intrusion detection system in a real world scenario, using measurements of
the electromagnetic emissions from the processor on a Siemens Simatic S7-317 Pro-
grammable Logic Controller (Figure 2.3). The goal of the intrusion detection system
was to observe the side-channel leakage during the regular modus operandi of the
controller and profile such behavior. Subsequently, the current leakage of the device is
compared to the regular profile and anomaly detection is performed.

The initial templating attempts relied largely on univariate techniques for profiling
and comparison. Such techniques were adequate to detect large deviations from the
correct device behavior. For instance, a malware that included extra operations in the



Figure 2.3: Side-channel intrusion detection system deployed on a Siemens pro-
grammable logic controller.

system was fairly easy to detect. However, if the malware inserted exhibited a behavior
that was very close to the regular operation, detection became substantially harder. To
improve, multivariate templating was deployed, improving the false-positive/negative
rate, due to the fact that it was able to observe the full horizontal leakage of the
regular operation.

2.4.3 Brain side-channels as biomarkers

The third and final scenario under discussion does not relate to embedded devices.
Instead it focuses on the analysis of the biological-world counterpart of a CPU: the
brain of a living organism. This particular scenario stems from the field of cognitive
neuroscience, involving aging and sleep. Research in this field is particularly interested
on how the brain activity, as observed via electroencephalography, conveys information
about a living organism. In other words, the brain activity is considered a “biomarker”
that captures the brain age and lets us succinctly draw conclusions about the health
of an individual [158].

Common biology experiments involve analysis using standard Pearson correlation
together with statistical significance intervals. In the case under discussion we have
observed the side-channel information from the brain of 6 mice groups while they
are sleeping. The mice groups include 3 aging levels namely young, middle-aged (18
months) and old (24 months). For every aging level, there exist mice that exercise
regularly and mice that do not exercise. Applying standard correlation techniques on
the brainwave activity resulted in a blurry picture (Figure 2.4). Most mice groups were
close to each other (within statistical error margins), i.e. the electroencephalogram
did not act a a strong biomarker. Once again, we applied multivariate statistical
templates, aiming to extract more horizontal information from the brainwaves. The
results are visible in Figure 2.5, where the distinction between different groups is
substantially more visible, solidifying the brainwave as a relevant biomarker.



Figure 2.4: Correlation-based analysis of mice brainwaves.

Figure 2.5: Template-based analysis of mice brainwaves.







Chapter 3

Masking Theory and Practice

“A theory is merely a scientific idea controlled by experiment.”

Claude Bernard, 1865

To tackle various side-channel attacks, researchers have put forward a plethora of
countermeasures, ranging from electrical layer mechanisms [167] to the algorithmic
protection of a cipher implementation [49, 216]. After identifying a side-channel
vulnerability, the common modus operandi of the community is a three-stage process
of designing a suitable countermeasure against it, implementing it efficiently and finally
performing an evaluation, using the appropriate laboratory apparatus and fulfilling
Common Criteria guidelines1. The majority of available countermeasures is developed
using this three-stage process, resulting in a conglomeration of 1) theoretical designs
and formal security proofs, 2) high performance cryptographic implementations in
assembly or HDL and 3) experimental evaluations using statistics and signal processing
techniques.

Among various countermeasure options, masking [49] has drawn a large amount
of attention. Originating from multi-party computation, masking can be applied
on many layers, starting from the algorithmic layer of a cipher and reaching the
gate layer. In all cases, it is capable of randomizing the intermediate values of its
computation. Examining masking in the context of the afore-mentioned three-stage
process, reveals the core research trends behind it. Namely, in the design stage, current
research has provided masking with provable security features, guaranteeing through
simulation proofs or formal verification that the countermeasure is secure against
certain adversarial models [20,111]. Continuing to the implementation stage, the large
performance bottlenecks in masking schemes prompted high-speed or low-footprint
implementations [92]. Finally, in the experimental evaluation stage, researchers try to
address the gap between theoretical leakage models and actual device emissions [12],
aiming to armor a provably secure masking scheme in the real world. The quote by
Claude Bernard demonstrates exactly this ceaseless cycle between new theoretical
models (along with corresponding secure schemes) and actual experiments that control,
justify or disprove such theories.

1https://www.commoncriteriaportal.org/products/



This chapter is based on work published in [70, 94, 161] and is motivated by
the need for fast and secure masking schemes for common microcontrollers. Thus,
it provides masked cipher implementations of popular symmetric ciphers such as
PRESENT and AES that break the current speed records, using carefully crafted
assembly implementations. Moreover, this chapter demonstrates in several occasions
how seemingly safe masking schemes can fall pray to hazardous electrical effects that
reduce the schemes’ security. The main points of the chapter are summarized below.

� This chapter follows the three-stage process of designing, implementing and
evaluating a countermeasure in order to provide efficient and secure masking
schemes. As a result, it shows that even higher-order masking schemes are
within the reach of common ARM and AVR microcontrollers, should we choose
to implement them carefully.

� This chapter addresses the significant gap between theory and practice in masking
schemes. Using an experiment-driven approach, it identifies several electrical
effects that damage the security of masking schemes and provides solutions that
harden our implementations.



3.1 Introduction

Cipher implementors have observed that the masking countermeasure can imply
a severe performance overhead in terms of processing speed due to the quadratic
computational complexity required [111]. This is a reason why in practice, well-
protected implementations are not as ubiquitous as one would hope. In software, higher-
order masked implementations are typically orders of magnitude slower compared
to unprotected implementations, as was demonstrated by Goudarzi et al. [92]. To
reduce the performance overhead in ARM architectures, this chapter explores data
parallelism both in its “artificial” version (register bitslicing), as well as in its real
version (NEON parallel processing instructions). In both cases, a single instruction
operates concurrently on multiple data elements inside one register, enabling faster
computations on masking shares. Standard bitslicing [32,68] is used for the PRESENT
cipher [36] on ARM Cortex-M4 and NEON instructions are used for the AES cipher [69]
on ARM Cortex-A8.

In addition, it is well understood that masking can secure implementations against
a specific threat model. Masking proofs are often conducted under the probing
model [111], also encountered as the value-based leakage model in the literature. The
underlying assumption of this model is that the adversary can only observe a single
intermediate value with every probe used, and this assumption is often referred to as
the independent leakage assumption [179]. Unfortunately, the exact computation of
values in complex devices is not always visible at higher abstraction layers, e.g. the
assembly code of a software implementation offers limited visibility on computations
and thus cannot guarantee that the device adheres to this adversarial model. For
instance, devices often exhibit distance-based leakages, which can reduce the security
of the masking countermeasure [12]. Likewise, coupling effects [58], glitches [140] and
other model divergences can pose similar security hazards.

3.1.1 Chapter Contribution

Starting, this chapter improves the current state of the art by creating an efficient,
bit-sliced, 2nd-order masked implementation of PRESENT. The PRESENT cipher
was selected due to its widespread applicability in the Internet of Things context. Our
implementation requires 1644 bytes of RAM, 1552 bytes of Flash and encrypts 32
blocks of data in 209023 clock cycles, achieving a throughput of 6,532 clock cycles
per block, excluding the cost of random number generation. Thus, the chapter
demonstrates that midrange ARM-based architectures (Cortex-M) can host masked
implementations efficiently, given that the implementors opt for full-scale assembly
programs and use efficient bitsliced state representations.

In the same spirit, this chapter studies how the powerful NEON vector unit on
high-end ARM Cortex-A8 processors can be used to obtain efficient masked AES
implementations. We use again a bitsliced representation of the AES state and we
exploit the data-level parallelism of Sbox computations. We provide the fastest publicly
available higher-order masked AES implementations with 3rd & 8th-order security for
the ARM Cortex-A8, requiring 7597 clock cycles per block, 11520 RAM bytes and



44004 Flash bytes for the 3rd-order version and 23616 clock cycles per block, 25600
RAM bytes and 70188 Flash bytes for the 7th-order version, excluding random number
generation. Thus, we demonstrate that high-end ARM-based architectures with
parallel processing capabilities can efficiently host highly protected implementations.

In addition to high-speed masked implementations, this chapter attempts to
bridge the gap between theory and practice in masking countermeasures in the
following manner. First, the chapter examines potential out-of-model leakages in
ARM architectures, i.e. it performs in-depth side-channel experiments in order to test
whether our masked ciphers in ARM Cortex-M4 and ARM Cortex-A8 are prone to
order reduction. Continuing, it focuses on the ATMega163 microcontroller, taking
advantage of its fairly noiseless leakage in order to investigate experimentally which
effects violate ILA. Aided by this investigation, this chapter attempts to mitigate such
problems and crafts the first (to our knowledge) 1st-order masked implementation
in ATMega163 that is capable of resisting 1st-order, univariate attacks. In other
words, it enforces the ILA in order to severely limit the informativeness of 1st-order
leakages, forcing the adversary to resort to 2nd-order attacks. As a proof of concept, it
develops a “hardened” 1st-order, ISW-based [111], bitsliced Sbox for the RECTANGLE
cipher [224]. The “hardened” implementation requires 1319 clock cycles, a 15-fold
increase compared to a “naive” 1st-order, ISW-based, bitsliced Sbox of the same
cipher.

3.1.2 Previous Work

In this section, we initially describe the work of those practitioners that addressed the
implementation of PRESENT and AES in software.

PRESENT implementations. Regarding protected implementations, Rauzy et al.
presented a design methodology for inserting Dual-rail with Precharge Logic (DPL) in
a software implementation of PRESENT in an automatic way [174]. They relied on
an 8-bit AVR ATMega 163 implementation, bitsliced. They require 235,427 cycles
for obtaining a single block of ciphertext. Regarding unprotected implementations,
Poschmann implemented PRESENT in different software platforms [168]. In a 4-bit
ATAM893-D at 2,000 KHz he obtained a performance of 55,734 cycles per block, on
an 8-bit ATMega at 4 MHz, a performance of 10,089 cycles and on an 16-bit Infineon
C167CR a performance of 19,460 cycles. Papagiannopoulos et al. [159] reached to
8,712 cycles per block by relying on a merged SP layer. Papagiannopoulos [162] also
presented a bitsliced implementation of PRESENT on the 8-bit AVR ATiny85. He
applied bitslicing to the permutation and substitution layers using a bitslice factor
of 64. This improvement work relied on the PRESENT Sboxes generated after the
application of 2-stage Boyar-Peralta heuristic in tandem with SAT solvers [40]. He
obtained a throughput (cycles per block) of 2,967 using 3,816 bytes of Flash and
256 bytes of SRAM. In this chapter, we rely on the same Sbox. Dinu et al. also
analyzed the suitability of a wide range of lightweight block ciphers in sensor-based
applications in three different architectures: an 8-bit ATMega, 16-bit MSP430 and
32-bit ARM processor. They do not apply bit-slicing and implement the Cipher



Block Chaining (CBC) and counter mode (CTR) modes of operation [73]. The
CBC implementation requires 121,906 cycles on the ATMega processor whereas the
CTR implementation can obtain one block of ciphertext in 15,239 cycles. On the
MSP430, the CBC and CTR modes of PRESENT, obtained a performance of 100,786
and 12,226 cycles respectively. The CBC implementation requires 138,947 cycles on
the 32-bit ARM processor whereas the CTR implementation can obtain one block
of ciphertext in 16,919 cycles. Last, the authors from [82] implement PRESENT-
80 in an 8-bit ATtiny, requiring 11343 cycles, 1,000 bytes of code and 18 bytes of RAM.

AES implementations. Regarding protected implementations, Goudarzi et al. [92]
compared the performance of different higher-order masking approaches on ARM
architectures. A simplified model is assumed for the number of cycles that specific
instructions take, without referring to a specific microarchitecture. Private com-
munication made clear that they are derived from the Keil simulator based on an
ARM7TDMI-S. Their fastest bitsliced implementation is claimed to take 120,972 cycles
with 4 shares and 334,712 cycles with 8 shares. To achieve this performance, the pres-
ence of a fast TRNG is assumed that delivers fresh randomness at 2.5 cycles per byte.
Only the cost of a normal ldr instruction it taken into account, which corresponds to
our performance with pre-loaded randomness. Wang et al. [219] presented a masked
AES implementation for NEON that appears to run in 14,855 cycles with 4 shares and
77,820 with 8 shares on a Cortex-A15 simulator. This uses a cheap LFSR-based PRNG
to provide randomness. Balasch et al. [13] use the ARM Cortex-A8 for masked AES
but they do not mention the performance of their implementation, since they focus
solely on the security evaluation . Finally, Journault and Standaert [115] consider a
bitsliced AES implementation with up to 32 shares on an ARM Cortex-M4. They
exploit the parallelism of the shares, but not of AES itself as there are only 32-bit
registers. An on-board TRNG is used to provide randomness at a reported speed of
20 cycles per byte. They use the refreshing and multiplication algorithms of [21] and
report that 2,783,510 cycles are required to compute an AES block fwith 32 shares, of
which 73% are spent on generating randomness.

Regarding unprotected implementations, bitsliced AES implementation of Bern-
stein et al. [30] uses exploits NEON to run at 19.12 cycles per byte (i.e., 306 cycles
per block) in CTR mode, processing 8 blocks in parallel. Using similar approaches,
the implementation of Käsper et al. [119] manages 7.59 cycles per byte on an Intel
Core 2, while being constant-time.

3.1.3 Chapter Organization

This chapter is organized as follows. Section 3.2 describes a high-performance im-
plementation of 2nd-order masked PRESENT on ARM Cortex-M4 and provides
a side-channel evaluation that investigates order reduction. Similarly, Section 3.3
describes a high-performance implementation of 3rd & 7th-order masked AES and
provides a side-channel evaluation that investigates order reduction, estimation/as-



sumption errors and upper bounds for attacks. Section 3.4 investigates order reduction
and ILA-breaching effects, working towards mitigation on AVR ATMega163. Section
3.5 provides conclusions and future directions.

3.2 Masking PRESENT in ARM Cortex-M

The current section describes the design choices investigated in order to develop a
protected, high-throughput, assembly-based PRESENT implementation. Sections
3.2.1 describes the logic-level and architectural optimizations performed, while Section
3.2.2 performs a side-channel evaluation.

3.2.1 Implementation of Higher-Order PRESENT

Inspecting the PRESENT cipher and its bit-based permutations layer, we note that
CPU architectures tend to operate best on their native word size or half-words and they
encounter performance issues with bit-level manipulation. Although the Cortex-M4
features bit-banding support2, as well as a wide selection of bit-field instructions,
applying them in the context of PRESENT requires extensive use of load and store
instructions or numerous bit extractions/insertions, often resulting in poor performance.
Therefore the natural implementation choice is opting for bitslicing, which was used
to speed up DES bit-based permutations in a similar fashion [32].

In our implementation, we employ a bitsliced representation of factor 32, i.e. we
process in parallel 32 cipher PRESENT-80 blocks, 64 bits each, resulting in 256
bytes per bitsliced encryption. Doing so, allows us to efficiently compute both the
substitution and the permutation layer of the cipher. Analytically, the Sbox can be
decomposed into GF (2) operations which can be accelerated by via the SIMD-like
instructions and it no longer requires the application of memory lookup tables.3.
Similarly, the bit-based permutation layer can be accelerated by directly exchanging
the memory contents of the corresponding bitsliced bits according to the permutation
pattern, instead of relying on bit extraction, insertion and shifting.

3.2.1.1 ISW Multiplication & PRESENT Sbox

Efficient GF (2) decomposition of the Sboxes has always sparked research in the
direction of optimized of boolean circuits. In our implementation, we use the optimized
boolean circuit suggested for PRESENT by Courtois et al. [64]. The optimized
representation was generated by applying the Boyar-Peralta heuristic [40], which
reduces the circuit’s gate complexity, i.e. the number of AND, OR, XOR, NOT
operations. The representation is shown below.

T1 = X2ˆX1; T2 = X1&T1; T3 = X0ˆT2; Y4 = X3ˆT3;

2Bit-banding allows individual bits to be addressed as though they were bytes in RAM
3Note that implementations based on lookup tables can be prone to timing side-channel attacks

in the presence of memory caches



T2 = T1&T3; T1 ˆ= Y4; T2 ˆ= X1; T4 = X3|T2;
Y3 = T1ˆT4; X3 =˜ X3; T2ˆ = X3; Y1 = Y3ˆT2;
T2 |= T1; Y2 = T3ˆT2;

Values X1–X4 represent an Sbox input, T1–T4 hold temporary values and Y1-Y4 are
output values. The total cost is 14 operations, 4 non-linear (AND, OR) and 10 linear
(XOR, NOT).

The bitsliced representation of PRESENT and the Sbox is decomposed into GF (2)
operations makes ISW [111] is our technique of choice in order to apply 2nd-order
protection on the Boolean operations required for the Sbox computation. Table 3.1
shows the ISW equivalent of common Boolean operations when applied to bitsliced
operands a and b, as well as the computational cost involved for each operation. The
values zi,j where 1 ≤ i < j ≤ (d+ 1) are drawn from a uniform random distribution
and the remaining zi,j are computed using (zi,j ⊕ aibj)⊕ ajbi. Note that the cost of
the NOT operation is a single negation, the cost of the XOR operation is linear and the
cost of the AND,OR operations is quadratic. In our implementation, the OR operation
is converted to a single AND and three NOT operations in order to apply the ISW
method.

Table 3.1: ISW equivalents of common boolean operations

Operation ISW Equivalent Cost

NOT(a) ¬a0 O(1)
XOR(a,b) ai ⊕ bi O(d)
OR(a,b) NOT(AND(NOT(a),NOT(b))) O(d2)
AND(a,b) aibi ⊕

⊕
i 6=j zi,j O(d2)

It comes as no surprise that the quadratic computational complexity of non-
linear operations can result in a computationally demanding masked Sbox. To avoid
this, several techniques [46,47,64,91,202] work towards reducing the multiplicative
complexity of an Sbox, i.e the number of AND,OR operations. TheGF (2) decomposition
that we currently use is optimal w.r.t. multiplicative complexity, since brute-force
techniques [95] demonstrate that the minimal complexity inGF (2) of cryptographically
relevant, 4-bit Sboxes is 4 non-linear operations.

3.2.1.2 ARM-based Optimizations

Our implementation targets the ARM Cortex-M4 microcontroller architecture using
ARM assembly with Thumb2 encoding. Thus, we use a 32-bit architecture with
14 general purpose registers designed for low-cost, low-power applications. The
implementation board is the Riscure Pinata which is based on the STM32F417IG
SoC by ST and embeds an ARM 32-bit Cortex-M4 CPU clocked at 168 MHz. It
features 1,024 Kbytes of Flash and 196 Kbytes of RAM. The device is also equipped
with a TRNG on the board in order to generate the random values associated to our



masking implementation. In the case of the STM32F417IG, the TRNG generates 32-bit
random numbers via an integrated analog circuit. Note that the computational penalty
w.r.t. random number generation is particularly steep when implemented on-the-fly,
mounting to roughly 25% of the total computation. Still, we note that the random
numbers can be precomputed in advance, given that the application context allows
for time intervals between consecutive encryptions. Below, we discuss implementation
details and efficiency improvements pertaining to the ARM architecture, memory
organization and assembly instructions.

� Memory organization: Our design requires two full bitsliced states in RAM,
each comprising of three sub-states corresponding to the three-share masking
scheme. The two full bitsliced states are needed because the permutation
layer would otherwise overwrite unprocessed data. We optimize for cycles by
integrating the permutation into the Sbox and writing words to their permuted
destination immediately after the Sbox computation.

Wherever the code operates on shares we organize our fetch and store data
in batches so as to reduce overhead. In most cases we use the LDM and
STM instructions to load or store three or four words at a time. This yields
improvements in the Sbox computation when reading in the next four words to
be substituted, in the key schedule, where three words at a time are read in for
processing and also when converting a regular state representation from/to a
bitsliced one.

� Loop Unrolling: To improve the efficiency of our Sbox implementation, which
encrypts twelve shares (four bit-sliced data blocks of three shares each), we unroll
the substitution process to reduce the unnecessary read/write steps required
for a looped construction. The unrolling adds considerable size to the code, yet
we achieve trading code size for throughput. Note that unrolling is performed
with memory access in mind. For example, we mentioned that adding the key
schedule is performed in a loop of three words. This optimizes the key schedule
operation and maximizes the amount of data we can bring from/to the RAM.

� Key Schedule: The round key is not stored in a bitsliced fashion and the
key schedule is computed on the fly. Note that round key precomputation is
also a valid implementation option, assuming that the key does not need to be
renewed often. Since, key refreshing can act as a side-channel countermeasure,
we chose to retain the on-the-fly key updates. Updating the round key requires
a push through the Sbox for four bits each round. To that purpose, we use
Cortex-M4’s UBFX instruction for extracting a contiguous series of bits from a
word in an efficient manner. In addition, we used ARM’s barrel shifter function,
which allows the second operand to be shifted with no additional cost before an
instruction is performed.



3.2.1.3 Performance Results

The current section summarizes the achieved performance results with respect to
throughput and size. We depict in Tables 3.2 and 3.3 our performance figures,
compared to previous works. We outperform prior art on the same architecture
between 2.5 and 21.2 times. As expected, the ISW implementation of the Sbox
dominated CPU time, accounting for 95,88% of all clock cycles within the encryption
process. A complete breakdown of the memory and time overheads required for
different modules is provided in Table 3.4.

Table 3.2: PRESENT implementations, comparison with prior art (performance)

Work Implementation Bitslicing Bitslicing factor Protected Platform No. cycles per block

This work PRESENT-80 yes 32 yes ARM Cortex–M4 6,532

[73] PRESENT-80, CBC no - no ATMega 121,906
[73] PRESENT-80, CBC no - no MSP430 100,786
[73] PRESENT-80, CBC no - no ARM 138,947
[73] PRESENT-80, CTR no - no ATMega 15,239
[73] PRESENT-80, CTR no - no MSP430 12,226
[73] PRESENT-80, CTR no - no ARM 16,919

[159] PRESENT-80 yes 8 no ATiny 8,721

[174] PRESENT-80 yes 8 no ATMega163 78,403
[174] PRESENT-80, DPL yes 8 yes ATMega163 235,427

[162] PRESENT-80 yes 8 no ATiny85 2,967

[168] PRESENT-80 no - no ATAM893-D 55,734
[168] PRESENT-80 no - no ATMega163 10,089
[168] PRESENT-80 no - no C167CR 19,460

Table 3.3: PRESENT implementations, comparison with prior art (size)

Work Implementation Code (bytes) RAM (bytes)

This work PRESENT-80 1,548 1,644

[162] PRESENT-80 3,816 256

[168] PRESENT-80, ATMega 1,494 272
[168] PRESENT-80, C167CR 45.9·103 -

[73] PRESENT-80, CBC, ATMega 1,388 56
[73] PRESENT-80, CBC, MSP430 1,108 52
[73] PRESENT-80, CBC, ARM 1,304 124
[73] PRESENT-80, CTR, ATMega 1,416 54
[73] PRESENT-80, CTR, MSP430 1,244 58
[73] PRESENT-80, CTR, ARM 1,532 140

[159] PRESENT-80 1,794 -

[174] PRESENT-80, bitslicing 1,620 288
[174] PRESENT-80, bitslicing + DPL 3,056 352

3.2.2 Side-Channel Evaluation of Higher-Order PRESENT

In this section, we assess experimentally the security level (masking order) provided
by the ISW masking scheme, taking into account the possibility of distance-based
leakages in ARM Cortext-M4. In addition, we investigate whether the theoretical
repercussions of distance-based leakages can be confirmed experimentally. In other
words, we examine whether the cost of “lazy engineering” as introduced by Balasch et



Table 3.4: SW transformations of common logical operations

Operation Code Size (%) No. Cycles (%)

main 208 (13.44) 3,807 (1.82)
Sbox 892 (57.62) 200,404 (95.88)
updatekey 146 (9.43) 1,688 (0.81)
addroundkey 176 (11.37) 1,209 (0.58)
split data 60 (3.88) 1,292 (0.62)
unsplit data 66 (4.26) 623 (0.30)

al. [12] is applicable to an ARM-based microcontroller. Section 3.2.2.1 describes the
experimental setup. Section 3.2.2.2 evaluates the security order of the implementation.

3.2.2.1 Experimental Setup

The acquisition is performed on the ARM-based Pinata device 4, using a Picoscope
5203 oscilloscope, the Riscure current probe 5 and the Riscure Inspector toolchain. The
device clock operates on 168 MHz and the oscilloscope’s sample rate is 1 GSample/sec.
The PRESENT process sets a GPIO port high before the execution of PRESENT and
sets it low after PRESENT is finished, so that it can be used as the trigger signal. We
also apply post-processing in the form of simple static alignment signal resampling at
the clock frequency. The Pinata device is visible in Figure 3.1.

Figure 3.1: Modified Pinata ARM STM32F417IG device.

3.2.2.2 Security Order Evaluation

The effective and efficient evaluation of the actual mask order of cryptographic
implementations remains an open problem due to several evaluation pitfalls. Effectivity-
wise, when evaluating a masking scheme via the measured power consumption, we face
the pitfall of the limited attack scope. That is, a particular attack technique in use may

4https://www.riscure.com/security-tools/hardware/pinata
5https://www.riscure.com/security-tools/hardware/current-probe

https://www.riscure.com/security-tools/hardware/pinata
https://www.riscure.com/security-tools/hardware/current-probe


fail to exploit the available leakage due to e.g. an unsuitable choice of intermediate
values or an incorrect power model assumption6. Moreover, introducing additional
countermeasures on top of the masking scheme may render particular exploitation
techniques ineffective, while the implementation remains vulnerable to different lines
of attack.

In order to tackle this issue, the community followed several approaches. Prior
research established generic side-channel distinguishers such as Mutual Information
Analysis (MIA) [23], the Kolmogorov-Smirnov and the Cràmer-von Mises tests [217,
221], which require minimal assumptions about the noise and the power model of the
device under test. On the other side of the spectrum, Standaert et al. [197] proposed
an evaluation framework assuming the strongest possible adversary, equipped with
extensive profiling capabilities and Bayesian templates. While being effective, the
afore mentioned approaches focus on leakage exploitation and perform key recovery,
which may require a large number of traces. Thus, they face the efficiency pitfall w.r.t.
computational and storage requirements. Note that this increased demand for resources
is magnified when inserting extra countermeasures in a masked implementation. Thus,
it can be difficult to decide with confidence whether the masking order is reduced or
not.

In order to evaluate the effective masking order [134], we opt for the more recent
approach called leakage detection methodology [60]. This approach focuses on leakage
detection and disregards exploitation. Thus, the acquisition and the computational
cost is reduced while the methodology can retain its generic nature. Despite the gain
achieved via decoupling detection and exploitation, the leakage detection methodology
still presents challenges w.r.t. efficiency. In the context of software masking, we need
to combine multiple time samples in order to evaluate the masked implementation.
Thus, we rely on the work by Schneider et al. [185], who extended the leakage detection
methodology into higher-order evaluations by providing efficient, incremental formulas
that can handle the computation involved with minimal memory requirements. In
certain cases, we also resort to traditional evaluation techniques such as correlation-
power analysis (CPA) [41], despite their limited attack scope, so as to enhance our
discussion.

In order to perform leakage detection and determine the actual masking order, we
use the fixed vs. random, non-specific t-test statistic. The process involves two steps:
a custom acquisition of two trace sets (populations) and a population comparison
based on statistical inference. In the first step, we perform a fixed vs. random
acquisition and obtain two distinct trace sets for comparison: Sfixed and Srandom,
under the same encryption key. For Sfixed, the input plaintext is set to a fixed value,
while for Srandom, the input is drawn from a uniformly random distribution. Following
the suggestion from Shneider et al. [185], the implementation receives the fixed
or random plaintext in a non-deterministic and randomly-interleaved manner. This
type of acquisition is performed in order to randomize the implementation’s internal
state and avoid measurement-related variations over time, e.g. due to environmental
parameters. The evaluation test to be performed is non-specific, i.e. we target

6Knowledge about the device can often be limited in the context of black-box evaluations.



all sensitive values computed during encryption. Thus, we maintain a wide attack
scope, without any prior assumptions on the leakage model or intermediate values.
For the second step, we model the sets Sfixed and Srandom as independent random
samples {S1

fixed . . . S
n
fixed} and {S1

random . . . S
m
random} drawn from normal distributions

with means µfixed,µrandom, standard deviations σfixed,σrandom and σfixed 6= σrandom.
Subsequently, leakage detection methods will test the equality of means µfixed, µrandom
(null hypothesis). Finding a statistic for this test is known as the Behrens-Fisher
problem and an approximate solution is the Welch t-test [130] with υ degrees of
freedom, as shown below.

Hnull : µfixed = µrandom

Halt : µfixed 6= µrandom
(3.1)

w =
µfixed − µrandom√
σ2
fixed

n
+

σ2
random

m

(3.2)

υ =
(
σ2
fixed

n
+

σ2
random

m
)2

σ4
fixed

n2(n−1)
+

σ4
random

m2(m−1)

(3.3)

The null hypothesis Hnull is rejected at a given level of significance α, if |w|> tα/2,υ,
where tα/2,υ is the value of the Student t distribution with υ degrees of freedom7. In
the evaluation context, rejecting Hnull implies leakage detection, i.e. potential evidence
of an ineffective masking scheme. A common rejection criterion that we also use in our
analysis is |w|> 4.5, which corresponds to υ > 1000 and α > 0.99999 [72]. Note that
that Hnull rejection shouldn’t be interpreted directly as an applicable vulnerability.
Even after detection, the amount of traces required for exploitation may render an
attack infeasible.

In this work, we need to evaluate the masking order provided by our ARM-
based, 2nd-order masked cipher. From a theoretical point of view, a 2nd-order ISW
masking countermeasure is capable of preventing value-based leakages of order 2 or less.
However, practice has demonstrated that software implementations, including ARM
microcontrollers, may exhibit leakages with large divergence from the value-based
leakage abstraction. An exemplary case is the distance-based leakage model, observed
by Daemen et al. [208], addressed by Coron et al. [63] and recently formalized by
Balasch et al. [185]. This particular divergence leads in the reduction of the security
order. Repeating Balasch et al., a dth-order scheme can reduce to order bd

2
c and to

identify such order reduction in our implementation, we use the Welch t-test in order
to verify experimentally the theoretical security claims.

We commence the evaluation by testing the 1st-order security of our masked cipher.
We perform the 1st-order t-test on the first round of bitsliced PRESENT. The size of
both Sfixed and Srandom is 10k traces with 30k samples per trace. The t-test results
are visible in Figure 3.2. We observe that that we remain well below the 4.5 threshold,
indicating that our 2nd-order masked PRESENT implementation is able to maintain
1st-order security.

7Note that side-channel analysis usually employs two-tailed tests.



Figure 3.2: 1st-order t-test evaluation for 2nd-order masked PRESENT cipher. The results suggest
absence of 1st-order leakage.

To enhance our confidence, we also perform a 1st-order CPA attack, with a large
amount of traces (800k) to exploit potential 1st-order leakages. We use the HW model
and a custom-made selection fuction due to the bitsliced Sbox computation. Similarly
to Balasch et al. [13], the selection function must take into account that not all Sbox
output bits leak at the same time due to the GF (2)-oriented Sbox implementation.
Thus, our selection function focuses on key bits from different registers that once
combined through the Sbox, affect a single bit of the Sbox output. Attacking a section
of the 1st round with 10k traces, while the RNG is disabled, is successful, confirming
the validity of our choice w.r.t. the leakage model (HW ) and selection function. The
results are visible in Figure 3.3. We also perform the CPA attack with enabled RNG
and the results are visible in Figure 3.4. In order to manage the computation required,
we employ the techniques suggested by Bottinelli et al. [39], i.e. we partition the 800k
traces, compute correlation coefficient per partition, then recombine in order to reduce
the execution and memory workload.

Figure 3.3: 1st-order CPA attack results
with RNG turned off, using 10k traces in se-
lected section of the 1st round.

Figure 3.4: 1st-order CPA attack results with
RNG turned on, ranging from 100k until 800k
traces.

The results demonstrate that no 1st-order leakage can be exploited in the presence
of our 2nd-order scheme. Both the t-test and the CPA result is in accordance with
the order-reduction theorem, since a 2nd-order masked implementation can maintain



b2
2
c = 1 order of security in the presence of distance-based leakages.
Assuming that our device exhibits distance-based leakage, it is of particular interest

to prove experimentally that the order-reduction theorem holds when we test the
2nd-order security of our ARM-based masked implementation. Performing a 2nd-order
evaluation requires pre-processing the acquired trace sets in order to generate all
possible 2-tuples (pairs) of distinct samples via a combination function. Subsequently,
the multivariate 2nd-order t-test is performed on the generated trace sets in order to
determine the robustness of the 2nd order.

The main hindrance of this process is the computational complexity pertaining to
generating and processing all

(
NoSamples

2

)
sample pairs. Even with a small number of

samples per trace, the evaluation cost can quickly become prohibitive. To address this
issue, researchers have relied on intuitive selection of points of interest in conjunction
with naive search [155] or they deployed heuristic techniques such as projection
pursuits [80] to perform point of interest selection for higher-order attacks. In our
evaluation, we follow the intuitive approach by focusing on a reduced version of the 1st
round which contains the substitution layer. Inside this reduced round, we enumerate
naively all possible pairs. Given the bitsliced nature of the implementation and the
considerable RNG overhead, the reduced round has a length of 800 samples. In order to
keep the processing cost manageable, we use again the incremental formulas suggested
by Schneider et al. [185] which enable the efficient computation of the multivariate
statistical moments required for 2nd-order t-tests. The memory-less feature of the
computation yields significant improvement compared to straightforward computation
techniques. In addition, we partition the reduced round into windows of 150 samples
each and perform the attack in each window independently. Figure 3.5 shows the
t-test results using 10k fixed input traces and 10k random input traces for the sample
window with the largest detected leakage.

Figure 3.5: 2nd-order t-test results. The rejection of Hnull indicates potential leakage.

The test value slightly exceeds the threshold, indicating potential leakage. Thus,
it hints the experimental verification of the order-detection theorem in our ARM-
based device for 2nd-order ISW schemes. However, several concerns were raised over
the t-test robustness, usually regarding the exact threshold value ( [12] – Appendix
A, [72]). As a result, it remains an open question whether 2nd-order leakages are
practically exploitable in our context. To investigate this, we perform a 2nd-order



CPA-based attack using the centered product combination function and the custom
bitsliced selection function on the 1st round of PRESENT. The point selection window
has size 100 samples and we use 100k traces. The results are visible in Figure 3.6 and
show that the leakage is exploitable with roughly 60k traces.

As a result, we suggest that the order-reduction theorem remains applicable in
software-based, masked implementations for the ARM Cortex-M4. However, we rec-
ommend that the exploitation is always verified in practice.

Moreover, we need to stress the fact that this type of behavior has been observed
in a specific ARM-based device. Although it provides indications on the behavior of
similar architectures, this experimental result should not be extrapolated as a hard
fact w.r.t. all ARM Cortex-M devices. Naturally, a 3rd-order multivariate t-test is
able to detect a large amount of leakage, as shown in Figure 3.7 and indicates that a
3rd-order attack is also applicable.

Figure 3.6: 2nd-order CPA results indicat-
ing exploitable leakage.

Figure 3.7: 3rd-order t-test results on a section of
the 1st round, indicating strong 3rd-order leakage.

3.3 Masking AES in ARM Cortex-A

The current section describes the design choices investigated in order to develop
a protected, high-throughput, assembly-based AES implementation. Section 3.3.1
describes the logic-level and architectural optimization performed, while Section 3.3.2
performs a side-channel evaluation.

3.3.1 Implementation of Higher-Order AES

The AES state [69] is usually pictured as a square matrix of 4 by 4 byte elements.
This representation leads to efficient software implementations when SubBytes is
implemented, aided by lookup tables. However, such implementations are also prone
to cache-timing attacks [29], as the memory location of the value that is looked up
depends on some secret intermediate value. An alternative bitsliced representation
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Figure 3.8: Register lay-out for the single-block implementations. There are 8 of these
16d-bit vector registers. The cells on the bottom row represent individual bits.

avoids these attacks. In this bitsliced representation, all the first bits of every byte are
put in one register, all the second bits in the next register, etc. For SubBytes, one can
now compute the Sbox on the individual bits and do that for all 16 bytes in parallel.
The Sbox parallelism of AES for bitslicing was first exploited by Könighofer in [127]
and it was also used in the speed-record-setting AES implementation targeting Intel
Core 2 processors by Käsper et al. [119]. At a small cost, the other (linear) operations
of AES are modified to operate on this bitsliced representation as well.

However, on most devices registers are longer than 16 bits, so it would be a waste
to not utilize this. AES implementations without side-channel protections choose to
process multiple blocks in parallel, by simply concatenating multiple 16-bit chunks
from independent blocks in one register. For example, the AES implementation of
Käsper et al. [119] processes 8 blocks in parallel in a 128-bit XMM register. When the
vector registers become larger, this trivially leads to higher throughputs for parallel
modes of operation.

Similarly to bitsliced masked PRESENT, this implementation section we consider
three implementations that, instead of multiple blocks, process multiple shares in
parallel. The first implementation fills a 64-bit d register with 4 shares. The second
has 8 shares, that are used to fill a 128-bit q register. The third combines 2 blocks
with each 4 shares, and also utilizes the 128-bit q registers. It interleaves the shares
of the 2 blocks for efficiency reasons. Note that this third implementation requires
a parallel mode of operation. Continuing with the implementation, Section 3.3.1.1
discusses in detail the masked multiplication and refreshing, while Sections 3.3.1.2
and 3.3.1.3 focus on the non-linear and linear layers respectively. Performance figures
are provided in Section 3.3.1.4.

3.3.1.1 Parallel Multiplication & Refreshing

Instead of using standard ISW-based masking, the AES implementations opt for
the more recent methods of Barthe et al. [21], where new algorithms for parallel
multiplication (including the AND operation) and parallel refreshing are proposed.
They are proven to be secure in the bounded moment model and proven to be strongly
non-interfering using techniques from automated program verification [20]. Correct
implementations of these algorithms are critical for the security of our implemen-
tations. We consider slightly improved algorithms for 4 and 8 shares that require
less randomness, but we could not generalize them to an improvement for all orders.
As with the original algorithms, they are proven secure using the same automatic
verification tools.



Refreshing. Refreshing can be necessary to make sure that values in registers are
again statistically independent. The refreshing algorithm of Barthe et al. [21] requires
2d bytes of fresh uniform randomness. Let vx denote a vector register that contains
shares (x0, . . . ,xd−1), where

⊕d−1
i=0 xi = x, and let vr be a vector of the same length

that contains uniformly random values. In the case of AES, a single share would be
16 bits long, so a randomness vector vr will be 2d bytes. Then vx′ = vr ⊕ rot(vr, 1)
⊕ vx is a secure way to refresh x, where rot(v,n) rotates v to either left or right by n
shares. Note that in the case of AES, this is equal to applying a rotation by 2n bytes.

For 4 shares, this algorithm additionally achieves SNI. However, to reach this with
8 shares, in [21] it turned out to be necessary to iterate the refreshing algorithm 3
times. In other words, one would need to compute

vr ⊕ rot(vr, 1)⊕ vr′ ⊕ rot(vr′ , 1)⊕ vr′′ ⊕ rot(vr′′ , 1)⊕ vx

to achieve SNI at order 7. This requires 3 vectors of uniform randomness, or 48 bytes
with AES. We improve this algorithm by computing:

vr ⊕ rot(vr, 1)⊕ vr′ ⊕ rot(vr′ , 2)⊕ vx .

We verified with the current version of the tool of [20] that this also achieves SNI at
order 7. Moreover, it requires one less randomness vector. In the case of AES, we now
require 32 bytes of uniform randomness.

Multiplication. Multiplication in a finite field, or an AND gate in the case of F2, is
trickier to perform in a secure way. Consider the case where one wants to compute
z = x · y. Let vr and vr′ be uniformly random vectors. Then, with 4 shares, the
algorithm suggested in [21] computes the following to achieve SNI at order 3:

vz = vx · vy ⊕ vr ⊕ vx · rot(vy, 1)⊕ rot(vx, 1) · vy ⊕ rot(vr, 1)

⊕ vx · rot(vy, 2)⊕ vr′ ⊕ rot(vr′ , 1) .

However, we can again improve this slightly such that less randomness will be
necessary. Let r4 be a uniformly random value. Then we proved using the tool
of [20] that the following is also 3rd-order SNI-secure. For AES, this requires 10 fresh
uniformly random bytes (8 for ~r and 2 for r4) instead of 16:

vz = vx · vy ⊕ vr ⊕ vx · rot(vy, 1)⊕ rot(vx, 1) · vy ⊕ rot(vr, 1)

⊕ vx · rot(vy, 2)⊕ [r4, r4, r4, r4] .

With 8 shares, we use the original algorithm of [21] that is SNI at order 7. This
requires 3 randomness vectors, which in the case of AES amounts to 48 bytes:

vz = vx · vy ⊕ vr ⊕ vx · rot(vy, 1)⊕ rot(vx, 1) · vy ⊕ rot(vr, 1)

⊕ vx · rot(vy, 2)⊕ rot(vx, 2) · vy ⊕ vr′

⊕ vx · rot(vy, 3)⊕ rot(vx, 3) · vy ⊕ rot(vr′ , 1)

⊕ vx · rot(vy, 4)⊕ vr′′ ⊕ rot(vr′′ , 1)



We attempted to reduce this by replacing the last randomness vector by a vector
with a single random value, as in the algorithm for 4 shares, but we found that this
does not achieve SNI at order 7.

Randomness. As we observed for masked PRESENT, implementations that are
protected using higher-order masking require a lot of RNG and the randomness
improvements in the GF (2) multiplication work towards reducing it. Regardless of
the amount of RNG, to be able to prove statistical independence, this randomness
should be fresh and uniformly distributed. For resisting attacks in practice, it is not so
clear whether the exact requirements are this strict. For instance, it might also be fine
to expand a random seed using a pseudo-random number generator, or even to re-use
randomness, as we will examine in Chapter 4. Since, the impact on the performance
can be very significant, we consider various approaches that occur in the literature.
The first is to read all the randomness that we require from /dev/urandom using
fread, like Balasch et al. [13]. This is the most conservative approach, but it is rather
slow. Second, we also consider the case where all required randomness is already in a
file that needs to be read into memory, i.e. we assume that RNG is carried out during
idle device phases before/after encryption. The third approach assumes that there
exists a fast true random-number generator and only considers the cost of a normal
load instruction (vld1), like in [92].

The AES implementation with 4 shares requires 8 bytes per refresh and 10 bytes per
masked AND. In the next section we will see that this amounts to 10 ·32 ·(8+10) = 5760
random bytes in total for the full AES, excluding the randomness used to do the
initial masking of the input and the round keys. Naturally, the implementation that
computes two blocks in parallel requires double the amount of random bytes. For 8
shares, refreshing takes 32 bytes and a masked AND uses 48 bytes, which makes the
total 10 · 32 · (32 + 48) = 25600 bytes.

3.3.1.2 AES Sbox

Using the masked AND and refreshing algorithms, we can build our bitsliced Sbox.
Several papers have presented optimized bitsliced representations of the AES Sbox.
The smallest known to us is by Boyar and Peralta [40]. It uses 83 XORs/XNORs and
32 ANDs, which was later improved to 81 XORs/XNORs and 32 ANDs. The few NOTs
can be moved into the key expansion, so we only need to consider XORs and ANDs.
We use this implementation as our starting point, as this is also the implementation
with the smallest number of binary ANDs, and an AND will be much slower to compute
than a XOR.

We use the compiler provided in [19] to generate a first masked implementation of
SubBytes. This tells us when it is necessary to refresh a value, making sure that we do
not refresh more often than strictly necessary. For our version of SubBytes, however,
the compiler adds a refresh on one of the inputs for every AND. Then we implement
an XOR on multiple shares in parallel with a veor instruction. For an AND, we use
the algorithms of the previous section. Finally, the code has been manually optimized



to limit pipeline stalls.
The Sbox implementation has many intermediate variables. With 4 shares and

a single block, the d registers are used. There are 32 of them and this turns out to
be sufficient to store all the intermediate values. With two blocks or with 8 shares,
however, we can use only 16 q registers. This implies that values have to be spilled
to the stack. Of course, we want to minimize the overhead caused by this. In the
work by Schwabe et al. [187], an instruction scheduler and register allocator for the
ARM Cortex-M4 was used to optimize the number of pushes to the stack. We modify
this tool to handle the NEON instructions that we need, and use it to obtain an
implementation with 18 push instructions and 18 loads.

According to a cycle-count simulator [192], our SubBytes implementation takes
1035 cycles with one block and 4 shares and 2127 cycles with 8 shares.

3.3.1.3 AES Linear Layer

We now discuss the linear operations of AES. We manually optimized them using a
cycle-count simulator to hide as many latencies as possible [192].

AddRoundKey. AddRoundKey loads the round key with the vld1 instruction
and adds it to the state using veor. The loads and arithmetic instructions can be
interleaved. This helps because they go into separate NEON pipelines. An arithmetic
instruction can than be executed in parallel with the load of the next part of the
round key. For the loads, we make sure that they are aligned to at least 64 bits.
AddRoundKey then only takes 10 cycles.

ShiftRows. With ShiftRows, rotations by fixed distances over 16 bits need to be
computed. This can be implemented using vand, vsra, vshl, and vorr instructions.
The arithmetic pipeline is now clearly the bottleneck. According to the simulator, our
ShiftRows takes 150 cycles.

MixColumns. MixColumns requires more rotations by 4 or by 12 over 16 bits. This
takes 106 cycles as measured by the simulator.

3.3.1.4 Performance Results

We benchmark our implementations on the BeagleBone Black with the clock frequency
fixed at 1 GHz. In other words, we disabled frequency scaling. For the rest, we did
not apply any changes to a standard Debian Linux 9 installation. In particular, we
did not disable background processes and did not give our process special priority or
CPU core affinity. The implementations are run 10000 times and the median cycle
counts are given in Table 3.5.

When using /dev/urandom, more than 99% of the time is spent on generating
randomness, which is delivered at a rate of only 369 cycles per byte in the 8-share
case. With a faster RNG, it becomes clear that our implementations are very fast
and practical. We reach 474 cycles/byte with 4 shares and 1476 cycles/byte with 8



4 shares
1 block

4 shares
2 blocks

8 shares
1 block

Clock cycles
(randomness from /dev/urandom)

1,598,133 4,738,024 9,470,743

Clock cycles
(randomness from normal file)

14,488 17,586 26,601

Clock cycles
(pre-loaded randomness)

12,385 15,194 23,616

Random bytes 5,760 11,520 25,600
Stack usage in bytes 12 300 300
Code size in bytes 39,748 44,004 70,188

Table 3.5: Performance of our masked AES implementations.

shares with pre-loaded randomness. Note that all implementations are fully unrolled,
so the code size can trivially be decreased to roughly a tenth when this is a concern.
However, we do not expect this to be an issue for devices with a Cortex-A8 or similar
microprocessors, as they are relatively high-end.

Following, we discuss how our implementation compares to related work. We note
that one should be cautious when it comes to comparing cycle counts, in particular
when benchmarks were obtained on different microarchitectures or from simulators.
Analytically, despite the differences between ARMv4T and ARMv7-A, it is clear that
we manage a noticeable improvement between the work of Goudarzi et al. [92] and ours.
Comparing to Wang et al. [219], we require less randomness due to a different masking
scheme and apply bitslicing instead of computing SubBytes with tower-field arithmetic.
The Cortex-A15 is more modern and powerful than the Cortex-A8. It can decode 3
instructions instead of 2, has out-of-order execution, and its NEON unit has a 128-bit
wide datapath instead of 64-bit. However, it has longer pipelines which means that the
penalty for, for instance, wrong branch predictions will be higher. We ran their code on
our Cortex-A8-based benchmarking device and measured 34,662 cycles for the 4-share
implementation and 158,330 cycles for the 8-share implementation, but we cannot
fully explain the difference due to the amount of possible causes and the unavailability
of more detailed information. Comparing to Journault et al. [115] we show how the
parallelism in SubBytes can additionally be exploited on a higher-end CPU with vector
registers to improve performance. Compared to unmasked implementations, there is
of course still a noticeable performance penalty for adding side-channel protections.
The unmasked bitsliced AES implementation of Bernstein et al. [30] also exploits
NEON to run at 19.12 cycles per byte (i.e., 306 cycles per block) in CTR mode, but
that uses counter-mode caching and processes 8 blocks in parallel.

3.3.2 Side-Channel Evaluation of Higher-Order AES

This section provides a side-channel evaluation of the implemented masked AES
cipher. Section 3.3.2.1 provides the experimental setup, Section 3.3.2.2 evaluates the



security order of the implementation and Section 3.3.2.3 expands the evaluation, using
information-theoretic bounds.

3.3.2.1 Experimental Setup

Balasch et al. [13] described in detail how they performed DPA attacks on a BeagleBone
Black running at 1 GHz. Our experimental setup and measuring environment follow
their approach. The board is running Debian Jessie and has several processes running
in the background. We power the board using a standard AC adapter and connect
it to the measurement PC over Ethernet. A few lines of Python on the BeagleBone
open a TCP socket and spawn a new AES process for every input that it receives.
The measurement PC connects to the socket and sends inputs over Ethernet.

We use a LeCroy WaveRunner 8404M-MS oscilloscope with a bandwidth of 4 GHz,
operating at a sampling rate of 2.5 GSamples/sec. The AES process sets a GPIO port
high before the execution of AES and sets it low after AES is finished, so that it can be
used as the trigger signal. We place a magnetic field probe from Langer, model RF-B
0.3-3, with a small tip on the back of the BeagleBone board, near capacitor 66. The
probe is connected to a Langer amplifier, model PA 303 SMA. The acquired traces
were post-processed using the Riscure Inspector toolchain in order to perform signal
alignment. We note that OS-related interrupts in conjunction with time-variant cache
behavior result in a fairly unstable acquisition process. Thus, the evaluator has to
either discard a large portion of the acquired trace set or resort to more sophisticated
alignment techniques such as elastic alignment [214]. The BeagleBone Black device is
visible in Figure 3.9.

Figure 3.9: BeagleBone Black ARM Cortex A-8 and Langer RF-B 0.3-3

3.3.2.2 Security Order Evaluation

Since our implementation uses SNI gadgets, it maintains theoretical security against
probing attacks of order d− 1 or less. The natural starting point of our side-channel



evaluation is to identify any discrepancy between the theoretical and the actual security
order, i.e., to determine the real-world effectiveness of the masking scheme. To achieve
that goal, we need to assess whether the shares leak independently or whether the
leakage function recombines them. Such recombinations can be captured by evaluating
the security order in the bounded moment model [21] using, e.g., the leakage detection
methodology [60,185,223].

What we encounter once again is the gap between the theoretical order of a masking
scheme and its real-world counterpart [12]. Similarly to masked PRESENT, we face
the issue of distance-based leakages, which can result in the order reduction of a
scheme. Following the same pattern as Section 3.2, we evaluate the security order
using the leakage detection methodology known as TVLA [60], which emphasizes
detection over exploitation in order to speed-up the procedure. To make the evaluation
feasible w.r.t. data complexity, we focus on the first round of our single-block 4-share
implementation and employ the random vs. fixed Welch t-test, which uses random
and fixed plaintexts acquired in a non-deterministic and randomly interleaved manner.
Consecutively, we perform univariate t-tests of orders 1 through 4 using the incremental,
one-pass formulas of Schneider and Moradi [185] at a level of significance α = 0.00001.
The results are plotted in Figure 3.10. Note that the number of samples per trace
is fairly high due to the lengthy computation of the 4-share masked AES round
and due to the high sampling rate dictated by the clock frequency (1 GHz) and
the Nyquist theorem. As a result, the t-test methodology faces the issue of multiple
comparisons and we need to control the familywise error rate using the Šidák correction
αSID = 1−(1−α)1/#samples [188]. The leakage detection threshold th is then computed
using the formula th = CDF−1

N (0,1)(1−αSID/2), which equals to 6.25 when testing 25k

samples per trace [223].
In Figure 3.10 we observe that for orders 1 and 2, a 1M random vs. 1M fixed

t-test does not reject the null hypothesis, thus no leakage is detected in the first two
statistical moments. The situation is different for higher orders: both the 3rd and
the 4th-order univariate t-tests are able to detect leakage. This demonstrates that
the actual security order of the implementation is less than the theoretical one and
detecting the presence of 3rd-order leakage is in fact easier than detecting 4th-order
leakage. Interestingly, the experimental results are not in direct accordance with
the order reduction suggested by Balasch et al. [12], i.e., our 3rd-order (4-share)
implementation achieves practical order of 2, while the theorized reduction suggests
b3/2c = 1st-order security.

An additional way to approach the order reduction issue is to phrase it as a leakage
certification problem [78,79]. The leakage certification procedure allows us to assess the
quality of a leakage model w.r.t. estimation and assumption errors. Gauging the effect
of estimation errors, i.e., those that arise from insufficient profiling, is straightforward
and can be carried out via cross-validation techniques [81]. Assumption errors are more
difficult to assess, since they arise from incorrect modeling choices and would ideally
require the comparison between the chosen model and an unknown perfect model. To
tackle this, the indirect approach of Durvaux, Standaert and Veyrat-Charvillon [79]
observes the relation between estimation and assumption errors and if the latter are



(a) 1st-order, 1M random vs. 1M fixed. (b) 2nd-order, 1M random vs. 1M fixed.

(c) 3rd-order, 1M random vs. 1M fixed. (d) 4th-order, 1M random vs. 1M fixed.

Figure 3.10: Univariate leakage detection of orders 1 until 4.

negligible in comparison, they conclude that the chosen model is adequate.
In our approach, we use the t-test-based certification toolset of Durvaux et al. [78],

which focuses on the assumption and estimation errors for each statistical moment.
Initially, we start with an erroneous model for our 4-share implementation: we
assume that the leakage is sufficiently captured by a Gaussian template, i.e., a normal
distribution that is fully described by the first two statistical moments. The results are
visible in the upper part of Figure 3.11, using a trace set of size 900,000. In particular,
we plot the p-value of a t-test that compares an actual statistical moment (estimated
from the trace set) with a simulated statistical moment (estimated by sampling the
profiled model). A high p-value (i.e., a mostly white image) indicates that estimation
errors overwhelm assumption errors and that the chosen model is adequate. A small
p-value indicates that assumption errors are larger than estimation errors, thus the
chosen model is erroneous. The process is repeated for all first four statistical moments
(mean, variance, skewness, kurtosis) using cross-validation.

In the first two images of Figure 3.11 (upper part, mean and variance), the high
p-values indicate that these moments are well-captured by the model. Naturally, the
fourth image (upper part, kurtosis) is black, indicating that the model disregards the
4th moment of a parallel 4-share implementation which should (in theory) contain
useful information. Interestingly, the third image (skewness) is also black, penalizing



Figure 3.11: Leakage certification p-values for Gaussian templates and Pearson type I.

any model that does not include the 3rd statistical moment, although in a perfect
scheme it should not convey any information. We continue this approach with a more
adequate model for the 4-share implementation: we assume that the leakage is captured
by a Pearson type I distribution [186], i.e., a 4-moment Beta distribution. The results
are visible in the lower part of Figure 3.11 and show that the assumption errors in the
3rd and 4th moments tend to be smaller than the corresponding estimation errors.

As demonstrated by both the t-test methodology and the leakage certification
process, the NEON-based implementations on ARM Cortex-A8 are likely to be subject
to order reduction and may require further hardening to prevent dependencies between
shares. The potential causes of the order reduction remain unexplored since they
may stem from bus/register/memory transitions, pipelined data processing or even
electrical coupling effects. Pinpointing the origin of the security reduction remains an
open problem in the side-channel field since it essentially requires the countermeasure
designer to access/modify the hardware architecture and chip layout, a task that is
not possible with proprietary designs.

3.3.2.3 Information-Theoretic Evaluation

Having investigated the security order of the single-block 4-share AES implementation,
we turn to the evaluation of its 8-share counterpart. The core feature of a masking
scheme is the noise amplification stage. Assuming sufficient noise, it has been shown
that the number of traces required for a successful attack grows exponentially w.r.t.
the order d−1 [49]. As a result, the evaluation of the proposed 8-share implementation
can be beyond the measurement capability of most evaluators. To tackle this issue, we
will rely on an information-theoretic approach used by Standaert et al. and Journault
et al. [115, 197,200], assisted by the bound-oriented works of Prouff and Rivain [170],
Duc, Faust, and Standaert [76], and Grosso and Standaert [98].

Analytically, we start with an unprotected (single-share) AES implementation and



estimate the device/setup signal to noise ratio (SNR). We define the random variable
S to correspond to the sensitive (key-dependent) intermediate values that we try to
recover. Likewise, we define the random variable L to correspond to the time sample
that exhibits high leakage (heuristically chosen as the sample with the highest t-test
value). Subsequently, we profile Gaussian templates for all sensitive values s that are
instances of variable S. In other words, we estimate P̂ r[L|s]model ∼ N (µ̂s, σ̂

2
s) for all

s. Using the estimated moments, we compute the SNR as the ratio ˆvars(µ̂s)/Ês(σ̂
2
s),

resulting in SNR ≈ 0.004. We continue to compute the Hypothetical Information (HI)
which shows the amount of information leaked if the leakage is adequately represented
by the estimated model P̂ rmodel.

HI(S;L) = H[S] +
∑
s∈S

Pr[s] ·
∫
l∈L

P̂ rmodel[l|s] · log2P̂ rmodel[s|l] dl,

where P̂ rmodel[s|l] =
P̂ rmodel[l|s]∑

s∗∈S P̂ rmodel[l|s∗]
To simplify the evaluation process, we employ the independent shares’ leakage as-
sumption so as to extrapolate the information of a single share to the information
of a d-tuple of shares. Thus, in order to obtain the HI bounds for security orders 3
and 7, we raise HI(S;L) to the security order. In addition, the evaluator should take
special consideration w.r.t. horizontal exploitation [25, 215], which can be particularly
hazardous, e.g., in the context of lengthy masked multiplications. To showcase such a
scenario, we employ the bound of Prouff and Rivain [170], stating that the multipli-
cation leakage is roughly 1.72d+ 2.72 times the leakage of a d-tuple of shares. The
results of the information-theoretic evaluation are visible in Figure 3.12.

Figure 3.12: Information-theoretic evaluation for the 8-share masked implementation.

Figure 3.12 assesses the performance of the proposed 8-share AES implementation,
using information-theoretic bounds. The solid line shows the ideal masking perfor-
mance, while the dashed line shows a conservative masking performance due to order



reduction from order 7 to order 3. Last, the dotted line demonstrates the scenario
where the adversary exploits the order-reduced (conservative) version in a horizontal
fashion, i.e., he incorporates all intermediate values computed during a masked AES
multiplication. For the current SNR of the device, the measurement complexity is
bounded by approximately 291 measurements (ideal case), 245 (conservative case) and
242 (conservative horizontal case) [76].

3.4 Bridging the Gap

Through side-channel evaluations, Sections 3.2 and 3.3 demonstrated the hazardous gap
between masking theory and practice. In particular, they showcase experimentally that
designing a masking scheme using the value-based leakage model can result in order
reduction and poor performance once deployed in a real-world device. This detrimental
gap is observed in multiple devices such as low-end AVRs, as well as midrange and
high-end ARM architectures. Thus, Section 3.4 works toward mitigating it. In
particular, Section 3.4.1 describes the experimental setup. Section 3.4.2 examines such
order-reducing effects in an ATMega163 smartcard. Despite being a fairly outdated
device, ATMega163 is ideal to investigate such effects due its particularly low noise
levels. This enables us to experimentally test several ILA-breaching effects and identify
their origin, with little worry about such effects being “buried” in noise and remaining
undetected. The accumulated knowledge leads to Section 3.4.3, where we develop
a “hardened” 1st-order implementation of the RECTANGLE Sbox. The “hardened”
Sbox is capable of resisting ILA-breaching effects and maintain its security order.

3.4.1 Experimental Setup

Our setup uses the AVR ATMega163 microcontroller, clocked at 4MHz. The traces
are captured with a Picoscope 5203 at sampling rate of 25 MSamples/sec and are
post-processed using static align. The Riscure power tracer, enables us to produce a
trigger signal using the smartcard IO pins. The setup can be seen in Figure 3.13.

3.4.2 ILA-Breaching Effects

In this section, we present three effects identified in the ATMega163 microcontroller
that breach ILA and pose a hazard to any masking scheme’s security. Analytically,
the effects below demonstrate that independent computations do not necessarily lead
to independent leakages and thus, the order-reduction theorem can become applicable.
Every effect (Sections 3.4.2.1, 3.4.2.2 and 3.4.2.3) is described as a standalone, assembly-
based scenario that manipulates two 4-bit shares x0, x1 originating from the sensitive,
key-dependent, 4-bit value x, such that x = x0 ⊕ x1. The shares x0, x1 are always
manipulated in a theoretically sound manner, adhering to the masking scheme’s
requirements, i.e. we never combine the shares directly (e.g. via an exclusive-or
instruction eor x0, x1).



Figure 3.13: ATMega163 smartcard and Riscure power tracer.

For all the described scenarios, that are theoretically sound, we show experimentally
that ILA is not fulfilled by employing 1st-order, univariate techniques. Namely, we
perform correlation-based analysis [41], computing the correlation coefficient ρ between
the Hamming weight of the sensitive, key-dependent value x and the experimentally
acquired traceset. To maintain a wide attack scope, we also use the leakage detection
methodology [60,185] and compute the 1st-order, random vs. fixed t-test. We conclude
every scenario by suggesting possible solutions that enforce ILA. Restating Balasch et
al. [12], as we are always limited by the traces at hand, we cannot rule out the existence
of 1st-order leakages, yet we establish that their informativeness is substantially limited
compared to 2nd-order leakages in the target device. Note that extra care is taken in
order to assess all effects independently, i.e. we use the suggested solutions in order
isolate the effect under discussion from the rest.

The analyzed effects can manifest in several data storage units (e.g. registers,
SRAM/Flash memory cells, I/O buffers, etc.) and may relate to different instructions
of the AVR ISA8, leading to a very large number of potential scenarios. In order to
maintain a feasible scope, we limit our discussion to storage units and instructions that
are often encountered in the context of cryptographic implementations, i.e. SRAM
memory accesses (ld, st) and logical instructions (eor, and, or).

3.4.2.1 Overwrite Effect

The overwrite effect is observable when a share gets overwritten by a different share
from the same family. For instance, if share x0 in a data storage unit (register, memory
cell, etc.) gets overwritten by share x1, then the power consumption correlates with
the number of bits switched i.e. x0 ⊕ x1. This effect was observed by Daemen et
al. [208] and later revisited by Coron et al. [63].

Below, we address the most common situations in which overwriting arises during
a cryptographic implementation. We perform two experiments: a register-based

8http://www.atmel.com/images/Atmel-0856-AVR-Instruction-Set-Manual.pdf



overwrite via the instruction mov x0, x1, and a memory-based overwrite via the
instruction st SRAM x0, x1. The experiments are described in Listings 3.1 and 3.2.
Their analysis follow in Figure 3.14.

We confirm that overwriting is indeed an ILA-breaching effect, manifesting both
in registers and SRAM memory. Note that the exploitability of the effect varies
according to the data storage unit: in ATMega163, register-based overwriting can be
exploited with roughly 500 traces (3.14a), while memory-based requires at least 40k
traces (3.14c). Preventing register and memory-based overwrites is straightforward:
the corresponding register (or memory cell) needs to be cleared in advance.

Listing 3.1: Register overwrite ex-
periment.

;share x0 in r17
;share x1 in r23
mov r17,r23
;
;

Listing 3.2: Memory overwrite ex-
periment.

;share x0 in SRAM 0x0080
;share x1 in r17
ldi r27,0x00
ldi r26,0x80
st X,r17

3.4.2.2 Memory Remnant Effect

The memory remnant effect is a leakage effect originating from consecutive SRAM
accesses to shares of the same family. Assume that shares x0, x1 are stored in SRAM
cells and get accessed sequentially. Naturally, the first access leaks share x0 (value-
based leakage), yet it also creates a “remnant” of x0. The second access will leak the
transition of the share x1 and the remnant x0, reducing the security.

Listing 3.3: Memory remnant ex-
periment.

;share x0 in 0x0080
;share x1 in 0x0090
ldi r27, 0x00
ldi r26, 0x80
ld r17, X
ldi r27, 0x00
ldi r26, 0x90
ld r20, X
;
;

Listing 3.4: Clearing remnant ex-
periment.

;share x0 in 0x0080
;share x1 in 0x0090
ldi r27, 0x00
ldi r26, 0x80
ld r17, X
ldi r17, 0x00
ldi r26, 0x85
ld r17, X
ldi r26, 0x90
ld r20, X

We address the remnant scenario with two experiments. Listing 3.3 demon-
strates how two consecutive SRAM accesses ld rA, SRAM x0, followed by ld rB,
SRAM x1 produce the remnant effect. Second, in Listing 3.4, we show how clearing
the register and accessing an unrelated SRAM address (0x0085) can remove the
remnant.



(a) Register overwrite, 1st-order CPA, HW model,
500 traces.

(b) Register overwrite, 1st-order t-test, 5k random
vs. 5k fixed.

(c) Memory overwrite, 1st-order CPA, HW model,
65k traces.

(d) Memory overwrite, 1st order t-test, 50k random
vs. 50k fixed.

Figure 3.14: Register/memory-based overwrite effects

As shown in Figures 3.15a and 3.15b, consecutive SRAM accesses can potentially
lead to ILA violations. Exploiting (in a univariate manner) the memory remnant
effect in ATMega163 needs less than 500 traces with our setup. Preventing the effect
requires the clearing of the register and the insertion of a dummy SRAM access.
Alternatively, the implementor could ensure that same-family shares are not accessed
sequentially. Note also that the st instruction produces a similar effect. We speculate
that the memory remnant effect is caused by the structure of the the memory access
mechanism and potentially, the pipelining stages.

3.4.2.3 Neighbour Leakage Effect

The neighbour leakage effect implies that accessing or processing the contents of a data
storage unit will cause leakage in another unit as well. For example, assume that share
x0 is stored in register rB and share x1 is being processed in register rA. Assume also
that the registers rA, rB are subject to the neighbour leakage effect. Processing rB
will produce a value-based leakage of x0. At the same time, the neighbouring leakage
effect will cause rA to leak the value of x1, resulting in transition between shares and
the recovery of sensitive value x. The following two experiments (Listing 3.5) verify
the neighbour leakage effect between registers r2, r3, i.e. a share stored in r2 leaks



(a) Memory remnant effect,1st-order CPA, HW
model, 500 traces.

(b) Memory remnant effect, 1st-order t-test, 5k ran-
dom vs. 5k fixed.

(c) Clearing remnant effect,1st-order CPA, HW
model, 100k traces.

(d) Clearing remnant effect, 1st-order t-test, 100k
random vs. 100k fixed.

Figure 3.15: Memory-based remnant effect

when manipulating r3 and vice-versa.

Listing 3.5: Neighbour leakage experiment for r2 and r3.

; clear all registers
; sensitive ’x’ is in the selected register (r2 OR r3)
mov r0, r0
nop ; 5 times
mov r1, r1
nop ; 5 times
mov r2, r2
nop ; 5 times
mov r3, r3
nop ; 5 times
...
mov r31, r31

As shown above, we use the same code from Listing 3.5, but in the first time we



(a) Correlation ρ(HW (x0), traceset), r2-r3, 5k
traces.

(b) Correlation ρ(HW (x0), traceset), r3-r2, 5k
traces.

Figure 3.16: Neighbour-based leakage effect

put the sensitive variable x into register r2 (only line mov r2, r2 should result in
leakage). In the second time, we put the sensitive value into the register r3 (only line
mov r3, r3 should leak). However, Figure 3.16 shows that both register accesses
leak. As a result, we have identified a pair of data storage units (r2,r3) that exhibit
the neighbour leakage effect. Note that in this case the effect is symmetrical, i.e., r2
triggers r3 and vice-versa (Figures 3.16a and 3.16b). We also observed that the effect
is persistent, i.e. the mov instructions will trigger the same behavior, even if performed
later (not necessairly in order as in Listing 3.5). We run the same experiment in
order to identify all possible neighbour leakages in the register file (all pairs in set
{r0,...,r31}). The results are available in matrix R. The 32x32 matrix R is
generated experimentally, while investigating all possible neighbouring leakage effects
in the ATMega163 register file (by performing 32 experiments similar to Listing 3.5).
Value ‘1’ denotes the presence of leakage and ‘0’ the absence. We can see that the issue
mostly affects consecutive registers, although exceptions exist, e.g. register r0. We
did not identify a similar effect in SRAM memory, yet our experiments were limited
to a small region of cells. Neighbour-like effects have been observed in consecutive
instructions, yet it remains open whether they are cause by proximity or they stem
from other effects. We speculate that they relate to the structure of the register file
and likely involve the storage and multiplexing mechanism of the registers. Given
the pairwise manifestation of the effect, we speculate a pair-based organization of the
register file. Still, note that it is hard to link architectural options at the hardware
layer directly to side-channel effects, a situation that persists in Chapter 3 and will
resurface in Chapter 6. As a solution to the neighbour effect, the developer can opt
to avoid storing shares in hazardous registers and keep a safety distance between
consecutive instructions. Alternatively, he can store all shares in SRAM, except for
the ones currently in use.

Summing up, we stress the following focal points regarding the ILA-breaching
effects and their solutions:

� All identified effects are device-dependent, i.e. there is no hard guarantee that
they are observable and reproducible in different AVR-based microcontrollers,



00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
00 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
01 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
02 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
03 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
04 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
05 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
06 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
07 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
08 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
09 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
12 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
13 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0
21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0
22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0
23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0
24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0
25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0
26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0
27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0
28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0
29 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0
30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

Table 3.7: Neighbouring leakage effects in the ATMega163 register file.

let alone different architectures such as ARM, TI, PIC etc. Both intra-AVR and
inter-architectural observability of the effects remains open.

� The effects are often counter-intuitive when viewed in the assembly layer of
abstraction. They originate from the hardware and/or the physical layer, thus
can only be detected via experimental evaluation. Linking the assembly ILA-
breaching effects to a particular hardware component or physical phenomenon
is non-trivial [179, 203], especially without knowledge of the underlying chip
architecture and properties.

� Since the effect’s detection requires experimental evaluation, different instruc-
tions or code arrangements can potentially lead to additional, unidentified
ILA-breaching effects. Still, we maintain that it is possible to construct “hard-
ened” masked operations in ATMega163 by removing the identified effects (see
Section 3.4.3). It remains open whether the suggested solutions are computa-
tionally optimal or more efficient clearing techniques can be identified.

The takeaway message of this section is that assembly-level soundness cannot
enforce ILA and hence 1st-order security, due to the nature of the breaching effects.
However, it is possible to acquire sufficient knowledge about effects and solutions in
a particular device. These non-intuitive checks discussed above can be subsequently
integrated into “hardened” assembly code.



Table 3.8: Masked Sbox comparison in ATMega163

Order d Hardened
Latency Throughput RNG
cycles bits/cycle ×10−3 bytes

Unprotected no 32 250 0

1st order
no 87 91 4
yes (eff.) 993 8 4
yes (cons.) 1319 6 4

2nd order no 775 10 12

3.4.3 Harderned Implementation & Side-Channel Evaluation

The current Section builds up on the advances of Section 3.4.2 by putting forward
a “hardened”, 1st-order masked, ISW-based RECTANGLE Sbox. The desired aim
is to produce an assembly-based, lightweight Sbox implementation that is secure
against 1st-order, univariate attacks, hence forcing the attacker to resort to 2nd-order
techniques.

Our implementation opts for a bitsliced [32, 66] representation, due to both the
bitsliced structure of RECTANGLE and to the GF (2)-oriented nature of the ISW
countermeasure. We employ a bitslicing factor of 2, i.e. we exploit the 8-bit AVR
architecture in order to process two 4-bit Sboxes in parallel (nibble-slicing). The Sbox
is decomposed into GF (2) operations which can be accelerated by via SIMD-like, 8-bit
assembly instructions. The decomposition suggested by Zhang et al. [224] is optimal
w.r.t. GF (2) multiplicative complexity, looking again in the work Grosso et al. [95],
which established that the minimum number of non-linear operations required by 4x4
Sboxes is 4.

In order to “harden” the Sbox, we use the solutions suggested in Section 3.4.2
and follow two approaches: efficient and conservative. In the efficient approach, after
processing any share, we clear the registers on a need-to basis and insert dummy
ld instructions to avoid overwrite and remnant effects. We avoid neighbouring
leakage effects by always storing the shares in SRAM, i.e. the register file contains
only the shares used by the current instruction. In the conservative approach, we
perform all the afore-mentioned clearing techniques. In addition, we insert dummy
st instructions and perform thorough register/memory clearing. Both efficient and
conservative approaches are applied to every single instruction of the implementation,
i.e. the cost is linear w.r.t. the number of instructions that manipulate masked shares.
The resulting computational overhead is significant: the efficient “hardened” Sbox
implementation runs in 993 clock cycles, i.e. almost 12 times slower compared to the
“naive” 1st-order, ISW-based RECTANGLE Sbox, which runs in 87 clock cycles. The
conservative “hardened” Sbox implementation requires 1319 clock cycles, i.e. it is
15 times slower. Table 3.8 contains a comparison between “naive” 1st-order, “naive”
2nd-order and efficient/conservative “hardened” 1st-order bitsliced implementations
of the RECTANGLE Sbox in AVR assembly.

Using the random vs. fixed t-test, we evaluate the efficient and conservative
“hardened” 1st-order Sboxes, as well as the “naive” 1st-order Sbox. Using a 25k



(a) Efficient hardened Sbox, 1st-order t-test, 25k ran-
dom vs. 25k fixed.

(b) Conservative hardened Sbox, 1st-order t-test,
100k random vs. 100k fixed.

(c) Consevative hardened Sbox, 2nd-order t-test, 25k
random vs. 25k fixed.

(d) Naive Sbox, 1st-order t-test, 1k random vs. 1k
fixed.

Figure 3.17: Hardened and naive Sbox evaluations

random vs. 25k fixed t-test does not yield any statistically significant leakage in the
efficient “hardened” version (Figure 3.17a). However, we note that a 50k random vs.
50k fixed t-test is able to detect leakage, i.e. trying to reduce the cost of enforcing
ILA can have a detrimental effect on security. For the conservative “hardened” Sbox,
a 100k random vs. 100k fixed t-test does not detect any leakage (Figure 3.17b). Note
that a 2nd-order 25k random vs. 25k fixed t-test on a chosen sample window is able to
detect leakage. Therefore, we conclude that for the given device, the informativeness
of 1st-order attacks is substantially limited and a 2nd-order attack is the preferable
adversarial strategy (Figure 3.17c). Naturally, the “naive” 1st-order version rejects
the null hypothesis (Figure 3.17d) due to the ILA-breaching effects and the 1st-order
leakage can be easily exploited.

So far, the only way to guarantee the actual security order of a real-world imple-
mentation was to increase the scheme’s theoretical order d, in order to ensure that
the implementation attains an actual order of bd

2
c [12]. Clearing the ILA-breaching

effects requires a significant overhead and is device-dependent, yet it is the only
technique known to us that can enforce 1st-order, univariate security. In addition,
hardening does not increase the scheme order d, thus the RNG cost is not increased.
The previous suggestions require a higher scheme order, hence a significant overhead,
since both the implementation cost and the RNG cost are quadratic w.r.t. the order.



We compare the “hardened” 1st-order and “naive” 2nd-order implementation costs
(in clock cycles) and we observe that hardening the 1st-order Sbox is slower than
increasing the scheme’s order from 1 to 2 (both in the efficient and in the conservative
case). Still, the solution requires no extra RNG and we maintain that removing these
effects can also be beneficial to higher-order implementations, i.e. it is complimentary
to masking. The extent to which higher-order implementations can benefit from
removing ILA effects remains an open problem. Similarly, the exact cost/quality of
RNG is unclear in many applications; pseudo-RNG can imply the optimistic cost of a
two-round AES execution per 16 random bytes or the pessimistic cost of a ten-round
AES execution per 16 random bytes [96]. As a result, a 2nd-order implementation
AVR requires 18k cc (optimistic) or 93k cc (pessimistic) [5] for a full RECTANGLE
execution9, while a hardened 1st-order implementation requires only 6k cc (optimistic)
or 31k cc (pessimistic)10. We will revisit the standalone cost of RNG in Chapter 4,
where we will also investigate its interactions with SCA security.

3.5 Conclusions & Future Directions

In this chapter, we investigated the speed and space requirements of a bitsliced
implementation of PRESENT on the ARM Cortex-M4 architecture, protected with
2nd-order ISW masking. In addition, we have shown how higher-order masking of AES
can be speeded up using NEON vector registers of ARM Cortex-A8. In both ARM
architectures, we confirm experimentally the order-reduction effects. Regarding future
work, we note that the optimal strategy to attack masked implementations remains
open. The amount of leakage available in various security orders and the lack of
transparency when it comes to serial and parallel processing of shares makes a fair and
concrete evaluation difficult. For instance, using a higher-order univariate methodology
(like in masked AES), implicitly assumes that all the shares are manipulated in parallel.
While this appears to hold when looking at the NEON assembly specifications, full
parallelism may not be enforced on a hardware level. A deeper inspection of the
circuitry could potentially clarify the actual parallelism and guide us towards more
effective attacks. Moving towards multivariate exploitation, practical horizontal
attacks such as soft-analytical attacks need to be carried out such that we can gauge
in practice the detrimental effects of lengthy leaky computations and establish an
even more solid evaluation procedure. Finally, from the defenders point of view, this
chapter focused on the computational cost of masking, largely ignoring the RNG cost
implied (with the exception of the RNG improvements of Section 3.3.1.1. Since RNG
can pose a large bottleneck, Chapter 4 will investigate it in larger detail.

Moreover, this chapter investigated the hazards in software masking and estab-
lished a secure, 1st-order masked Sbox implementation against 1st-order, univariate
attacks. Still, several important questions for future work arise due to this effort. We
demonstrated that removing the ILA-breaching effects is feasible, yet identifying the
best clearing mechanism and minimizing the overhead is a topic for further exploration.

925 rounds, 4 16-bit AND per round, 3 16-bit random numbers per AND
1025 rounds, 4 16-bit AND per round, 1 16-bit random numbers per AND



Similarly, the current work is limited to AVR ATMega163 and needs to be extended to
different devices and platforms. Finally, we observe that the effects identified depend
on the architecture and the physical layer, making the assembly layer an error-prone
abstraction layer to work at. Future work can strive towards custom-made architec-
tures that enforce ILA in hardware and result in predictable assembly instructions
that do not compromise security. Ideally, such a construct should be able to guarantee
ILA directly through careful design, without relying on additional countermeasures
such as threshold implementations.









Chapter 4

Recycling Randomness

“Random number generation is too important to be left to chance.”

Robert Coveyou, 1970

Ostensibly, the last decade of side-channel research has seen the rise and estab-
lishment of masking and its glitch-resistant counterpart, threshold implementations
as the de facto side-channel countermeasures. Masking’s multifaceted forms have
emerged in software and hardware, prompting research on its security properties [111].
Concurrently, the tweakable masking representations enabled high-performance im-
plementations on a multitude of platforms and devices, similar to those presented in
[70, 94]. Finally, the countermeasure sparked in-depth laboratory evaluations, new
attack pathways and, naturally, discussions about its effectiveness like order-reducing
effects. Chapter 3 serves as a testament to the popularity of this countermeasure,
while it pushes the performance limits and attempts to fill in the gaps between theory
and practice. Following a similar trajectory to masking, shuffling a cipher’s operations
has also established approval within the hardware security community, leading to
multiple countermeasure implementations [181] and new exploitation techniques [216].

A unifying feature between masking and shuffling countermeasures is their inherent
reliance on random number generation. Masking requires random numbers to “hide”
the values of intermediate values, while shuffling needs random numbers to permute
the cipher’s operations. Broadly speaking, the research field of random number
generation has been actively proposing generators in various forms (true, deterministic,
hybrid generators) [17] and kept examining the statistical properties of the generated
random stream. Nonetheless, customized RNG for masking and shuffling is often left
unexplored, despite the symbiotic link between these countermeasures and random
numbers. So far, a large part of the community, including the work in Chapter 3,
was geared towards efficient design and implementation of the countermeasure itself,
dismissing the large performance overhead that stems from RNG peripherals. As a
result, the scheme’s computational overhead kept decreasing, while the respective RNG
overhead persisted or just remained in a state of flux. Advances in the area of RNG for
masking and shuffling have also been partially hindered by the lack of communication
between the academic and industrial sectors. This situation has limited the availability



of industrial-grade, open-source generators and has also enhanced the obscurity in
several random number generators of industrial devices.

Propitiously, recent academic work sheds more light on the necessity and impact
of random number generation on side-channel countermeasures [85]. This chapter is
based on work published in [160] and is motivated by the need to study the impact
of RNG on countermeasures, both in terms of security and in terms of performance.
When originally stating that “random number generation is too important to be left to
chance”, the core consideration was how do we construct sound and secure generators.
Interestingly enough, this chapter shall demonstrate that the phrase retains its merit
when considering how often do we use the afore-mentioned generators. The main
points of the chapter are summarized below.

� This chapter reconsiders how often do we need to perform random number
generation for masking and shuffling and proposes efficient countermeasure
variants. The security of the novel variants is extremely flexible and can be
adapted based on the device’s RNG capabilities and the designer’s choices.

� This chapter marks a shift from the traditional three-stage process of designing,
implementing and evaluating a countermeasure and signifies a different take on
side-channel protection. Instead of viewing a countermeasure as a set-in-stone
protection mechanism (that we need to optimize a priori), we opt to view it
a an integrated component which the designer can mold and tweak according
to his security needs. In this adaptive process the random number generator
acts like a fine-tuning instrument which enables the designer to customize the
countermeasure and adapt it to any application context.



4.1 Introduction

Following the work in Chapter 3, it is easy to see that when implementing masking or
shuffling, the RNG requirements impose a non-negligible performance overhead that
can impact the latency/throughput of the cryptographic implementation. Even if we
avoid such impact by performing the RNG procedure during idle phases of the device,
the required computations will directly increase the device’s energy consumption. In
order to meet the cumbersome RNG needs of masking and shuffling, designers can
employ several options with respect to the generator type. For instance, they can opt
to use a symmetric cipher structure as a pseudo random number generator, relying
on either a full-round or a reduced-round block cipher [96] or on a stream cipher
construct. Alternatively, they can opt directly for physical RNG or for structures that
use a physical random number generator to seed deterministic random bit generators
[17]. Recently, Faust et al. [85], has shifted the focus from constructing an efficient
RNG, towards decreasing the required RNG cost in total. In particular, they have
introduced the concept of amortizing randomness in a masking scheme, i.e. recycling
the available randomness between several gadgets in order to reduce the RNG cost.
Their work establishes the notion of security with common randomness (denoted
as t−SCR) and provides composable (t−SNI) gadgets [19] that achieve randomness
recycling. However, their analysis relies on simulation-based proofs that do not take
into account the effect of recycling on the noise level of the device and on the noise
amplification stage of masking. Naturally, this has lead to further investigation of
randomness recycling and randomness reduction in general, motivating the work in
this chapter.

4.1.1 Chapter Contribution

In this chapter, we put forward low-randomness versions of standard masking and
shuffling countermeasures, which we refer to as Recycled Randomness Masking and
Reduced Randomness Shuffling respectively. RRM and RRS are able to reduce the
RNG overhead by employing memory units to store random numbers and reuse them
later, e.g. in subsequent executions of the protected cipher. We provide several
efficient t−NI custom multiplication gadgets for low-order RRM schemes that reduce
randomness in an efficient manner. Similarly, we provide several design patterns that
can reduce randomness when shuffling. In both cases, trading RNG overhead for
memory overhead implies that every random number that is reused needs to be stored.
As a result, the proposed RRM and RRS schemes are geared towards microcontroller
units and possibly high-end FGPAs, since such devices can offer a fairly large amount
of memory storage. On the contrary, the more strict area requirements in ASIC
devices, encourage recycling on-the-fly, similarly to Faust et al. [85].

Subsequently, we investigate the noisy leakage security of RRM and RRS. We
note that the formal approach of Faust et al. [85] has already investigated the t−SNI
property of certain RRM schemes, introducing t−SCR. In order to establish a more
holistic notion of security, we complement their approach by performing an analysis
of a t−NI RRM scheme under the noisy leakage model, using the MI framework for



SCA [197]. In particular, we demonstrate how reducing the available randomness for
performance/cost reasons interacts with the noise amplification stages of RRM and
RRS. Thus, we establish a direct link between the randomness cost and the noisy
leakage security level provided by a countermeasure, i.e. we integrate the noise factor
in our analysis. We conclude that this randomness-security tradeoff constitutes a
potent tool in the designer’s arsenal that enables us to provide adequate security (in
the noisy leakage model), while limiting the computational cost that stems from RNG.

4.1.2 Previous Work

Multiplying two families of shares under an ISW Boolean masking scheme consists of the
computation of all partial products, as well as a compression algorithm that produces
the final result, while injecting randomness [28,111]. Several implementation techniques
and evaluation strategies have been suggested in the context of masking. With
respect to implementation aspects, the techniques proposed range from lookup-table
techniques [61,219] that re-randomize memory tables to GF -based circuits [45,92,180]
that generate and inject randomness in several gadgets.

Regarding the evaluation strategies for masking, this chapter relies heavily on
the recent advances by Battistello et al. [25] and Grosso et al. [98]. These works
suggest that masked multiplications are prone to horizontal attacks, i.e. attacks that
exploit several noisy intermediate values that are computed during the scheme. In
this chapter, we put specific emphasis on the impact of horizontal exploitation to the
noisy leakage security level of the scheme.

In the application of Boolean masking schemes, secure multiplications require
quadratic data complexity w.r.t. randomness, in order to ensure the refreshing of
partial products. Initially, Rivain et al. [180] extended the ISW scheme [111] and
put forward a d-private compression algorithm (RP) that can compute dth-order
secure multiplications in GF (2n) using d(d+ 1)/2, n-bit elements. Following, Beläıd,
Benhamouda, Passelègue et al. [28] suggested an improved d-private compression
(BBP) that performs partial product refreshing using bd2/4c + d random numbers
for security orders d > 4. In addition, they derived optimal compression algorithms
for security orders d = 2, 3 and 4 which have data complexity, respectively 2, 4 and 5
random elements per multiplication.

Despite recent efforts, it is notable that high-order masking implies a severe RNG
overhead. Making for instance a 2nd-order secure AES implementation with optimal
compression (2nd-order secure BBP) requires 10240 random bits per block encryption1.
Generating this amount of random bits with a pseudo AES-based random number
generator in ATmega microcontrollers implies an optimistic cost of roughly 20k clock
cycles (2-round AES generator) and a pessimistic cost of 100k clock cycles (10-round
AES generator) [5, 96]. We observe that the pessimistic case is fairly close to the
computational cost of the 2nd-order secure AES on AVR devices [11], i.e. it amounts
to approximately 38% of the clock cycles. Similarly, a 2nd-order secure PRESENT

1The cipher runs for 10 rounds consisting of 16 Sboxes, each requiring 32 GF (2) multiplications
that need 2 random elements for refreshing the partial products.



implementation on an ARM Cortex-M device spends 25% of its execution time for
TRNG, as shown in Chapter 3, Section 3.2. The severe overhead of RNG in masking
countermeasures can render the implementation cost prohibitive for small embedded
devices and has led countermeasure designers towards lightweight alternatives. Low-
entropy masking schemes [31, 97] reduce the randomness requirements by using
masks chosen within a subset of all the possible masks, yet if the leakage function is
not linear, they may reduce the security order. Schemes that amortize randomness
[85] can achieve similar goals without this shortcoming. In similar lines of work,
threshold implementations examined techniques that reduce or even minimize the
fresh randomness required to achieve uniformity [34,65]. Still, we stress that several of
these schemes need to be evaluated in a fair manner, i.e. by using horizontal leakage
exploitation, such as the analysis carried out by Battistello et al. [25] and Grosso et
al. [98].

4.1.3 Chapter Organization

This chapter is organized as follows. In Section 4.2 we provide the improved RRM
gadgets and analyze the noise amplification stage of RRM. Similarly, we describe
RRS and analyze its noise amplification stage in Section 4.3. Conclusions and future
directions are discussed in Section 4.4.

4.2 Recycled Randomness Masking - RRM

This section puts forward a low-randomness version of the standard Boolean masking
schemes, namely it introduces Recycled Randomness Masking (RRM). The novelty
of RRM lies in considering two or more masked multiplications simultaneously and
sharing randomness between their compression layers. Using this approach, we develop
t−NI gadgets that reduce the RNG overhead of masked ciphers and enable side-channel
protection at a modest budget. We commence with two elementary examples that will
be used throughout this section to illustrate the core recycling idea and we introduce
additional notation to describe generic RRM schemes (Section 4.2.1). We continue
with section 4.2.2 which searches for optimized t−NI randomness-recycling gadgets
using formal verification techniques and applies them to the AES cipher. Finally,
Section 4.2.3 analyzes the noise amplification stage of RRM schemes and demonstrates
the impact of recycling in the noisy leakage model.

4.2.1 Recycling Randomness in Masking

We illustrate the application of RRM using two masked ISW multiplications z = xy
and c = ab. The multiplications are protected by ISW of security order d = 1
(Figure 4.1) or ISW of security order d = 2 (Figure 4.2). Both examples assume 4
independent families of shares (xi)0≤i≤d, (yi)0≤i≤d, (ai)0≤i≤d and (bi)0≤i≤d in GF (2).
Values t0, t1, t2,w0,w1,w2 are random elements in GF (2) that are necessary to maintain



probing security2.
In Figures 4.1 and 4.2, red-annotated variables are fresh random elements and

z0 = x0y0 ⊕ w0 c0 = a0b0 ⊕ (t0 ← w0)
z1 = x1y1 ⊕ (w0 ⊕ x0y1)⊕ x1y0 c1 = a1b1 ⊕ ((t0 ← w0)⊕ a0b1)⊕ a1b0

(multiplication 1 ) (multiplication 2 )

Figure 4.1: RRM scheme applied on two 1st-order secure ISW multiplications, gen-
erating random element w0 in multiplication 1 and recycling it in multiplication
2.

z0 = x0y0 ⊕ w0 ⊕ w1

z1 = (w0 ⊕ x0y1)⊕ x1y0 ⊕ x1y1 ⊕ w2

z2 = (w1 ⊕ x0y2)⊕ x2y0 ⊕ (w2 ⊕ x1y2)⊕ x2y1 ⊕ x2y2

(multiplication 1 )

c0 = a0b0 ⊕ (t0 ← w0) ⊕ (t1 ← w1)
c1 = ((t0 ← w0)⊕ a0b1)⊕ a1b0 ⊕ a1b1 ⊕ t2

c2 = ((t1 ← w1)⊕ a0b2)⊕ a2b0 ⊕ (t2 ⊕ a1b2)⊕ a2b1 ⊕ a2b2

(multiplication 2 )

Figure 4.2: RRM scheme applied on two 2nd-order secure ISW multiplications,
generating random elements w0 and w1 in multiplication 1 and recycling them in
multiplication 2.

green-annotated variables are recycled random elements. The left-arrow assignment
describes the recycling of a random element in a different multiplication. For instance,
in the 1st-order secure ISW-based scheme of Figure 4.1, the element w0 is generated in
multiplication 1 and it is subsequently recycled in multiplication 2 (t0 ← w0). Likewise,
the 2nd-order secure example of Figure 4.2 showcases two ISW multiplications, which
originally require 6 random elements: (w0,w1,w2) and (t0, t1, t2). To tackle the RNG
overhead, RRM generates 3 fresh random elements (w0,w1,w2) during multiplication
1 and recycles w0 in t0 and w1 in t1. Thus, the amount of random elements required
in multiplication 2 is reduced from three to a single random element (t2).

The proposed recycling technique can be generalized to more than two multiplica-
tions of any order and to describe such generic RRM schemes we introduce the following
notation. We assume a gadget consisting of n dth-order secure masked multiplications,
where every masked multiplication requires s random elements to maintain probing
security, e.g. multiplication i requires random elements (ri,1, ri,2, . . . , ri,s). We assume

2Throughout this chapter we consider elements in GF (2), yet our results and observations remain
applicable in larger fields.



all the inputs to the masked multiplications to be independent families of shares,
which may require fresh randomness in our implementation. In addition, we assume
that at least one out of n masked multiplications will generate fresh randomness.
Subsequently we define a recycle set R = {R1,R2, . . . ,Rn} that consists of sets Ri,
1 ≤ i ≤ n. Every set Ri describes all the the fresh or recycled random elements ri,j,
1 ≤ i ≤ n, 1 ≤ j ≤ s that the multiplication i is using to maintain probing security.
Figure 4.1 for instance has R = {{r1,1}, {r2,1}} = {{w0}, {w0}}, since the single
random element w0 is generated and used in multiplication 1 and it is reused (recycled)
in multiplication 2. Similarly, in Figure 4.2, R = {{r1,1, r1,2, r1,3}, {r2,1, r2,2, r2,3}} =
{{w0,w1,w2}, {w0,w1, t2}}, since random elements w0 and w1 are generated in multi-
plication 1 and they are recycled in multiplication 2, while element t2 is generated in
multiplication 2. If only a single multiplication generates fresh random elements and
all the other multiplications recycle them, then it holds that R = {R1,R2, . . . ,Rn},
where Ri = Rj for all 1 ≤ i, j ≤ n. Symmetrically, if no randomness gets recycled
(a.k.a. standard masking), then it holds that Ri ∩ Rj = ∅ for all 1 ≤ i, j ≤ n and
i 6= j. To specify the RNG overhead when recycling, we define the randomness cost of
an RRM gadget with n multiplications as the total amount of fresh random elements
generated. E.g. in Figure 4.1 the randomness cost is 1 and in Figure 4.2 the cost is
4, while in general the cost of an RRM scheme with recycle set R is |R1 ∪ · · · ∪ Rn|.
The cost of standard masking of n multiplications (without recycling randomness)
is equal to n ∗ s. In addition, we define the masking recycle factor frm of every
random element in the RRM scheme as the number of times it has been used in any
multiplication. In the example of Figure 4.1, frm(w0) = 4, since it occurs twice in
every multiplication. Similarly, in the example of Figure 4.2, frm(w0) = frm(w1) = 4
and frm(w2) = frm(t2) = 2. It is noteworthy that the recycling of random numbers
is similar to the repeated access to shares observed by Battistello et al. [25], where
the recycle factor of a share in dth-order secure scheme is shown to be equal to d+ 1.
We will henceforth refer to a dth-order secure masking gadget with n multiplications
and recycle set R as RRM(d,n,R). It is important to stress that RRM necessitates
storing and fetching the recycled random elements. Let gain g = n∗s−|R1∪· · ·∪Rn|
be the reduction in randomness cost achieved by an RRM(d,n,R) scheme. RRM
requires g less random elements and at most g extra storage units, depending on
how many times the elements are recycled. In addition, RRM requires at most g
extra store and fetch instructions when recycling. For example, in Figure 4.2 the gain
g = 2 ∗ 3− |{w0,w1,w2} ∪ {w0,w1, t2}| = 2 and it implies 2 extra storage units (w0

and w1), 2 extra store instructions and 2 extra fetch instructions.

4.2.2 Efficient RRM Multiplication Gadgets

As demonstrated, the core contribution of RRM is to reduce the randomness cost of n
multiplications below the n∗s random elements which are required by standard masking.
Notably, both ISW and BBP schemes are already reusing random elements during
the compression layer of a single multiplication, while maintaining dth-order probing



security3. Still, excessive recycling between multiplications can lead to RRM gadgets
that are no longer probing-secure. For instance, assume the ISW-based RRM(2, 2,R)
gadget of Section 4.2.1, Figure 4.2 with recycle set R = {{w0,w1,w2}, {w0,w1,w2}},
i.e. 3 fresh elements are generated in multiplication 1 and they are all recycled in
multiplication 2. Then, the tuple (z2, c2) depends on the sensitive values x, y, a and b
simultaneously, because z2 ⊕ c2 = x0y2 ⊕ x2y0 ⊕ x1y2 ⊕ x2y1 ⊕ x2y2 ⊕ a0b2 ⊕ a2b0 ⊕
a1b2 ⊕ a2b1 ⊕ a2b2. Since there exists such a tuple (z2, c2), the particular RRM gadget
is not 2nd-order probing-secure.

As a result, this section proposes t−NI optimized multiplication gadgets that are
capable to recycle a large amount of randomness. Analytically, for an RRM(d,n,R)
gadget, we search for recycle sets R that minimize the randomness cost, while the
gadget remains t−NI. We focus on small orders (d = 1, 2, 3) and two multiplications
per gadget (n = 2) due to their practical relevance in implementations. To detect
potential security flaws, we use the Lisp-based formal verification tool suggested
by Coron [62]. The tool generates all possible tuples of intermediate values (with
dimension less or equal to d) that stem from the RRM(d,n,R) gadget and verifies the
t−NI property using circuit transformations. This process is repeated for all recycle
sets R that ensure the correctness of the scheme, rejecting the insecure choices and
identifying the optimized recycle set that minimizes the randomness cost.

Algorithm 1: Brute-force search algorithm.

Input: n: number of multiplications
Input: R: recycle sets
Input: d: security order of multiplications
Input: Td: d-sized tuples

1 for all R do
2 Generate Td for RRM(d,n,R) ;
3 for all tuples t ∈ Td do
4 Verify t−NI of t
5 end
6 if secure ∀t ∈ Td then
7 Compute RandomnessCost(R)
8 end

9 end

The performed brute-force search of Algorithm 1 is carried out for both ISW-based
and BBP-based schemes4 and Figures 4.3a until 4.3e demonstrate the optimized t−NI
gadgets. The randomness and storage requirements of the proposed RRM gadgets are

3ISW uses a symmetric compression structure that reuses every random number once, thus
requiring half as many numbers as the naive solution. BBP uses a less regular structure which also
reuses every fresh number once.

4Running the tool on an Intel Core i7-4719HQ @ 2.5GHz requires minutes to verify 1st and
2nd-order secure RRM gadgets and can reach approximately 5 hours for the verification of 3rd-order
secure RRM gadgets.



z0 = x0y0 ⊕ r1
z1 = x1y1 ⊕ (r1 ⊕ x0y1)⊕ x1y0

c0 = a0b0 ⊕ r1
c1 = a1b1 ⊕ (r1 ⊕ a0b1)⊕ a1b0

(a) ISW RRM(1, 2, {{r1}, {r1}})
randomness/storage cost = 1

z0 = x0y0 ⊕ r1 ⊕ r2
z1 = x1y1 ⊕ (r1 ⊕ x0y1)⊕ x1y0 ⊕ r3
z2 = x2y2 ⊕ (r2 ⊕ x0y2)⊕ x2y0 ⊕ (r3 ⊕ x1y2)⊕ x2y1

c0 = a0b0 ⊕ r1 ⊕ r2
c1 = a1b1 ⊕ (r1 ⊕ a0b1)⊕ a1b0 ⊕ r4
c2 = a2b2 ⊕ (r2 ⊕ a0b2)⊕ a2b0 ⊕ (r4 ⊕ a1b2)⊕ a2b1

(b) ISW RRM(2, 2, {{r1, r2, r3}, {r1, r2, r4})
randomness cost = 4, storage cost = 2

z0 = x0y0 ⊕ r1 ⊕ x0y2 ⊕ x2y0
z1 = x1y1 ⊕ r2 ⊕ x0y1 ⊕ x1y0
z2 = x2y2 ⊕ r1 ⊕ r2 ⊕ x1y2 ⊕ x2y1

c0 = a0b0 ⊕ r1 ⊕ a0b2 ⊕ a2b0
c1 = a1b1 ⊕ r2 ⊕ a0b1 ⊕ a1b0
c2 = a2b2 ⊕ r1 ⊕ r2 ⊕ a1b2 ⊕ a2b1

(c) BBP RRM(2, 2, {{r1, r2}, {r1, r2}})
randomness/storage cost = 2, left-to-right evalua-
tion

z0 = x0y0 ⊕ r1 ⊕ r2 ⊕ r3
z1 = x1y1 ⊕ (r1 ⊕ x0y1)⊕ x1y0 ⊕ r4 ⊕ r5
z2 = x2y2 ⊕ (r2 ⊕ x0y2)⊕ x2y0 ⊕ (r4 ⊕ x1y2)⊕ x2y1 ⊕ r6
z3 = x3y3 ⊕ (x2y3 ⊕ r6)⊕ x3y2 ⊕ (x1y3 ⊕ r5)⊕ x3y1 ⊕ (x0y3 ⊕ r3)⊕ x3y0

c0 = a0b0 ⊕ r1 ⊕ r2 ⊕ r3
c1 = a1b1 ⊕ (r1 ⊕ a0b1)⊕ a1b0 ⊕ r7 ⊕ r8
c2 = a2b2 ⊕ (r2 ⊕ a0b2)⊕ a2b0 ⊕ (r7 ⊕ a1b2)⊕ a2b1 ⊕ r6
c3 = a3b3 ⊕ (a2b3 ⊕ r6)⊕ a3b2 ⊕ (a1b3 ⊕ r8)⊕ a3b1 ⊕ (a0b3 ⊕ r3)⊕ a3b0

(d) ISW RRM(3, 2, {{r1, r2, r3, r4, r5, r6}, {r1, r2, r3, r7, r8, r6}}), randomness cost = 8, stor-
age cost = 4

z0 = x0y0 ⊕ r1 ⊕ x0y3 ⊕ x3y0 ⊕ r2 ⊕ x0y2 ⊕ x2y0
z1 = x1y1 ⊕ r3 ⊕ x1y3 ⊕ x3y1 ⊕ r2 ⊕ x1y2 ⊕ x2y1
z2 = x2y2 ⊕ r4 ⊕ x2y3 ⊕ x3y2
z3 = x3y3 ⊕ r4 ⊕ r3 ⊕ r1 ⊕ x0y1 ⊕ x1y0

c0 = a0b0 ⊕ r1 ⊕ a0b3 ⊕ a3b0 ⊕ r5 ⊕ a0b2 ⊕ a2b0
c1 = a1b1 ⊕ r3 ⊕ a1b3 ⊕ a3b1 ⊕ r5 ⊕ a1b2 ⊕ a2b1
c2 = a2b2 ⊕ r6 ⊕ a2b3 ⊕ a3b2
c3 = a3b3 ⊕ r6 ⊕ r3 ⊕ r1 ⊕ a0b1 ⊕ a1b0

(e) BBP RRM(3, 2, {{r1, r2, r3, r4}, {r1, r5, r3, r6}}), randomness cost = 6, storage cost = 2,
left-to-right evaluation

Figure 4.3: Efficient RRM gadgets



demonstrated in Tables 4.1 and 4.2, which confirm that RRM is capable of reducing
the randomness cost substantially when compared to standard masking. It remains
an open research question to quantify how much the lack of composability (strong
non-interference) affects the efficiency, i.e. how many additional refresh layers will be
required in the scheme in order to provide a fair comparison with the work of Faust et
al. [85].

Scheme compression

ISW security order d BBP security order d

1 2 3 1 2 3

Recycling
yes 1 4 8 1 2 6

no 2 6 12 2 4 8

Table 4.1: Randomness cost of optimized RRM schemes for n = 2 multiplications.

Scheme compression

ISW security order d BBP security order d

1 2 3 1 2 3

Recycling
yes 1 2 4 1 2 2

no 0 0 0 0 0 0

Table 4.2: Storage cost of optimized RRM schemes for n = 2 multiplications, assuming
no storage is needed when recycling within a single multiplication (large register file).

On the application of RRM gadgets to the AES Sbox. Applying these novel
randomness-recycling gadgets in the AES cipher is extremely straightforward. Assume
a 1st-order secure masked AES cipher that uses the Boyar-Peralta decomposition [40]
in the Sbox implementation, i.e. the Sbox requires 32 multiplications in GF (2). During
the first execution of the AES cipher, we generate all the necessary random elements
without any recycling, i.e. for the first full Sbox execution we need 16 ∗ 32 ∗ 1 = 512
random elements, resulting in 10 ∗ 512 = 5120 random elements for 10 rounds of Sbox
executions. During the second independent execution of the AES cipher every Sbox
multiplication can recycle the randomness generated in the respective multiplication
of the first execution, since the gadget RRM(1, 2, {{r1}, {r1}}) is t−NI (Figure 4.3a).
Thus, the Sbox-related RNG cost of two AES executions is reduced from 10240 to 5120,
i.e. RRM achieves a 50% reduction of the RNG overhead, at the penalty of 5120 element
storage, 5120 store and 5120 fetch instructions5. In a similar fashion, we can apply the
3rd-order secure BBP-based RRM scheme. During the first AES execution we generate
10 ∗ 16 ∗ 32 ∗ 4 = 20480 random elements and in the second AES execution we recycle
part of them using the specification of the BBP(2, 2, {{r1, r2, r3, r4}, {r1, r5, r3, r6}})

5The actual number of instructions depends on the architecture.



gadget of Figure 4.3e. In this case, RRM achieves a 25% RNG reduction, while storing
and fetching 20480 elements. Proving the t−NI property for RRM gadgets with more
than 2 multiplications (n > 2) can enable recycling between more than 2 independent
AES executions.

4.2.3 RRM Noise Amplification

The previous section (Section 4.2.2) pinpointed the first pitfall of RRM schemes, i.e.
how excessive recycling can result in gadgets that are not probing-secure. Having
tackled this issue for low-order gadgets with formal methods, we proceed towards
the second pitfall of RRM. Namely, excessive recycling is hazardous to the noise
amplification stage of masking, even when the gadget is probing-secure. Specifically,
this section analyzes the noise amplification stage of several t−NI RRM gadgets of
Section 4.2.2, using the mutual information metric suggested by Standaert et al. [197].
In other words, we evaluate the proposed “recycling” countermeasure in the noisy
leakage model and compare it to standard masking schemes. The effectiveness of the
noise amplification stage of RRM largely depends on the adversary’s capability to
observe multiple noisy intermediate values during the gadget’s execution. We refer to
this capability as horizontal exploitation and we consider the following cases (C1-C3),
in ascending order of adversarial strength:

C1 Naive-tuple attack. The adversary exploits a single noisy (d+ 1)-tuple of the
RRM gadget and disregards any repetition of noisy intermediate values. This
scenario is equivalent to an attack against a non-recycling scheme that disregards
intra-multiplication repetitions.

C2 Chosen-tuple attack. First, the adversary observes the noisy leakage of share
repetitions (noted also by Battistello et al. [25]) and the noisy leakage of random
element repetitions (noted in this chapter as “randomness recycling”) in the
gadget. Second, he averages the observed noisy leakages in order to denoise the
side-channel emission. Finally, he exploits a chosen leakage (d+ 1)-tuple of the
RRM gadget that takes advantage of the denoising.

C3 Full-state attack. First, the adversary observes the noisy leakage of share
repetitions and random element repetitions in the gadget. Second, he averages
the observed leakages in order to denoise the side-channel emission. Finally, he
exploits the full state, i.e. all leaky intermediate values of the RRM gadget.

For our information-theoretic analysis (cases C1-C3), we introduce the following
notation to describe the leaky intermediate values and the noisy leakage of RRM
gadgets. In a given (d+ 1)-tuple of intermediate values, let random variable S be the
sensitive (key-dependent) intermediate value under attack and let random variables
M0, . . . ,Md−1 be the masks used to protect the sensitive value. The leakage of a (d+1)-
tuple is described using the following random vector: L = (LS⊕d−1

i=0Mi
,LM0 , . . . ,LMd−1

)+

N, where LS⊕d−1
i=0Mi

= Lid (S ⊕M0 ⊕ · · · ⊕Md), LMi
= Lid (Mi), 0 ≤ i ≤ d − 1 and

N is a (d+ 1)-dimensional random vector representing Gaussian noise. We assume



independent and equal noise σ2 in every sample, i.e. diagonal noise covariance matrix
and Li ∼ N (µi,σ

2), 0 ≤ i ≤ d.
In the naive-tuple case C1, the adversary disregards the multiple accesses to the

family shares (due to the structure of the masking scheme) and also disregards the
random element repetition (due to recycling), thus he cannot observe any repeated
leakages. In other words, the noise amplification stage in the C1 case is equivalent to
that of standard Boolean masking. This naive case is only applicable if the evaluator
cannot identify and locate the sample positions of the repeated leakages.

Contrary to C1, the chosen-tuple case C2 assumes that the adversary can locate
the leakage sample position of repeated shares and recycled random elements, yet
he is still limited to exploit a single (d + 1)-tuple of leaky intermediate values for
his attack. The number of repetitions of a specific random element or share v in the
RRM gadget is equal to its recycle factor frm(v). Averaging all available samples that
leak value v results in substantial noise reduction, i.e. Lv ∼ N (µv,σ

2/frm(v)), which
the adversary can use in order to diminish the noise amplification effect of masking.
Specifically, he can target a carefully chosen (d+ 1)-tuple of leaky intermediate values,
whose leakages have been noise-reduced beforehand. For instance, going back to the
example of Section 4.2.1 - Figure 4.2, a sufficient (yet not efficient) attack tuple for
RRM(2,2,{{w0,w1,w2}, {w0,w1, t2}}) is (x0y0,x1y1,x2y2). Since all the intermediate
values of the tuple appear only once, it holds that Lxiyi ∼ N (µxiyi ,σ

2) for 0 ≤ i ≤ 2 and
the noise amplification is the same as standard masking. A more efficient choice is tuple
(z2,w1,w2), where Lz2 ∼ N (µz2 ,σ

2), yet Lw1 ∼ N (µw1 ,σ
2/4) and Lw2 ∼ N (µw2 ,σ

2/2),
because frm(w1) = 4 and frm(w2) = 2.

To highlight the effects of recycling on the noisy leakage model, we performed
an MI-based evaluation for 1st and 2nd-order secure ISW RRM gadgets that are
proposed in Section 4.2.2. We make various choices w.r.t. the recycling factor (frm
ranges from 1 to 10) and the strength of horizontal exploitation (we consider both
naive-tuple C1 and chosen-tuple C2 adversaries). The experiments are described
in Table 4.3. Naturally, the evaluation depends on the aforementioned parameters,
yet we stress that it is adaptable to all RRM choices made by the countermeasure
designer. Concretely, computing the MI-metric for a (d+ 1)-tuple requires summing
over the randomness vector M = (M0, . . . ,Md−1) and computing (d+ 1)-dimensional
integrations [98]. The resulting MI vs. noise variance plot is visible in Figure 4.4
(left). In addition to the MI-metric, we use the conjecture of Duc et al. [76], in order to
approximate the number of traces required to perform a key recovery in the high-noise
regime. Analytically, we use the bound #traces ≥ H[S]

MI(S;L)d+1 and the no. of traces vs.

noise variance plot is visible in Figure 4.4 (right).

MI(S; L) = H[S] +
∑
s∈S

Pr[s] ·
∑

m∈Md

Pr[m] ·
∫

l∈L(d+1)

Pr[l|s, m] · log2Pr[s|l] dl

where Pr[s|l] =

∑
m∗∈R Pr[l|s, m∗]∑

s∗∈S
∑

m∗∈R Pr[l|s∗, m∗]
The evaluation results of 1st and 2nd-order secure RRM (cases C1 and C2) are



Figure 4.4: MI evaluation and no. traces bound for 1st and 2nd-order secure RRM
schemes with 2 multiplications, assuming naive-tuple (C1 - equivalent to std. masking)
and chosen-tuple (C2) adversaries. The evaluation considers gadgets with modest and
excessive recycling. Blue lines denote 2nd-order attack (vs. 1st-order RRM) and red
lines denote 3rd-order attack (vs. 2nd-order RRM).

visible in Figure 4.4 (left), from which we derive three core observations. First,
we note that the intermediate values used by the attacker affect directly the RRM
evaluation, i.e. the attacker can reduce the security level only by including the average
leakage of the repeated random elements or shares in his attack. If the noise-reduced
leakages are disregarded (Figure 4.4 solid red and solid blue lines), then the noise
amplification remains intact and equivalent to standard masking of the same order.
Second, assuming the right tuple is chosen, we observe that increasing the total
recycle factor shifts the MI-curve to the right, i.e. the amount of recycling (modest
or excessive) indeed damages the noise amplification stage of the scheme. This shift
is visible between the dashed blue line (modest recycling) and the dotted blue line
(excessive recycling). Note also that excessive recycling may increase the MI of a
2nd-order secure gadget above the MI of a 1st-order secure scheme. Third, we conclude
that the RRM technique is in fact a tradeoff between the mutual information level
achieved and the randomness cost required. This fact solidifies it as a lightweight
alternative to standard masking that can be used by countermeasure designers when
the randomness cost becomes prohibitive in a certain application context. Naturally,
the designer needs to always be aware of the device’s noise level in order to adapt
RRM order and recycle set accordingly.

In case C3, the adversary is capable of exploiting the full state of a multiplication,
which implies a computational overhead in the MI-formula due to the increase in the
integral dimension and the scheme order. In order to bypass this limitation, we simplify
the computation of MI, using the approach established by Grosso et al. [98]. Analyti-
cally, in order to include the (d+ 1)2 partial products in our evaluation, we use the
information bound established by Prouff et al. [170], stating that the multiplication’s
leakage is roughly 1.72(d+ 1) + 2.72 times the leakage of a (d+ 1)-tuple. Computing
the bound reduces the evaluation of an RRM multiplication to the evaluation of a



Attack description RRM(d,n,R) gadget Attack tuple Recycle factor frm

Naive-tuple 1st-order secure
2nd-order attack RRM(1, 2, {{r1}, {r1}}) (x0y0,x1y1) frm(x0y0) = 1
modest recycling frm(x1y1) = 1

Chosen-tuple 1st-order secure
2nd-order attack RRM(1, 2, {{r1}, {r1}}) (z1, r1) frm(z1) = 1
modest recycling frm(r1) = 2

Chosen-tuple 1st-order secure
2nd-order attack RRM(1, 10, {{r1}, . . . , {r1}}) (z1, r1) frm(z1) = 1

excessive recycling frm(r1) = 10
Naive-tuple 2nd-order secure

3rd-order attack RRM(2, 2, {{r1, r2, r3}, {r1, r2, r4}}) (z0, z1, z2) frm(z0) = 1
modest recycling frm(z1) = 1

frm(z2) = 2
Chosen-tuple 2nd-order secure

3rd-order attack RRM(2, 2, {{r1, r2, r3}, {r1, r2, r4}}) (z2, r2, r3) frm(z2) = 1
modest recycling frm(r2) = 4

frm(r3) = 2

Table 4.3: t−NI RRM gadgets analyzed in the noisy leakage model assuming naive-
tuple (C1) and chosen-tuple (C2) adversaries. The attacks exploit a large amount of
the available recycling (case C2, excessive recycling) or a small amount of recycling
(case C2, modest recycling) or they disregard recycling (case C1).

single (d+ 1)-tuple. We also employ the independent shares’ leakage assumption to
reduce the leakage vector from the information of a (d+ 1)-tuple X to the information
of a single share Xi, i.e. LX = LXi [76]. However, simplifying to a single-share
evaluation does not directly capture the noise reduction issue of RRM, caused by
random element and/or share repetitions. To incorporate the noise reduction in our
evaluation, we consider the worst-case scenario were the adversary is able to reduce
the noise of all intermediate values by a recycle factor fmaxrm . The factor fmaxrm is the
maximum recycle factor observed in any random number or share, e.g. in the gadget
RRM(2, 2, {{r1, r2, r3}, {r1, r2, r4}}), the maximum recycling is observed on random
numbers r1 and r2, thus fmaxrm = 4. Note that fmaxrm may stem from either repetitions
of random numbers or repetitions of shares. The bound constructed is conservative,
since we assume an adversary that can average every noisy intermediate value of the
encoding by the maximum recycle factor, i.e. LXi ∼ N (µXi ,σ

2/fmaxrm ), 0 ≤ i ≤ d.
Still, it provides an efficient alternative to direct computation of the MI formula and
demonstrates the evaluation trend for RRM schemes in the high-noise regime. It
remains open whether closer bounds can be derived for such scenarios. In Figure 4.5
(left) we demonstrate the MI evaluation of 2nd and 3rd-order secure RRM schemes,
with known recycle factor fmaxrm shown in Table 4.2, using the conservative bound
which raises MI(Xi;LXi) to the security order. In Figure 4.5 (right) we demonstrate
the no. of traces bound.



Figure 4.5: MI evaluation for 2nd and 3rd-order secure RRM schemes comparing
naive-tuple (C1) with full-state attack (C3). Blue lines denote 3rd-order attack (vs.
2nd-order RRM) and red lines denote 4th-order attack (vs. 3rd-order RMM).

Attack description RRM(d,n,R) gadget Attack tuple Recycle factor frm

Naive-tuple 2nd-order secure
3rd-order attack RRM(2, 2, {{r1, r2, r3}, {r1, r2, r4}}) full state fmax

rm = 4
Chosen-tuple 2nd-order secure

3rd-order attack RRM(2, 2, {{r1, r2, r3}, {r1, r2, r4}}) full state fmax
rm = 4

Naive-tuple 3rd-order secure
4th-order attack RRM(3, 2, {{r1, r2, r3, r4, r5, r6},

{r1, r2, r3, r7, r8, r6}}) full state fmax
rm = 4

Naive-tuple 3rd-order secure
4th-order attack RRM(3, 2, {{r1, r2, r3, r4, r5, r6},

{r1, r2, r3, r7, r8, r6}}) full state fmax
rm = 4

Table 4.4: t−NI RRM gadgets analyzed using a conservative bound assuming naive-
tuple (C1) and full-state (C3) adversaries.

On practical attacks and realistic leakage models. The non-trivial data com-
plexity of the optimal attacks for large order d and large amount of integral dimensions,
has led to the development of heuristic attacks that combine the horizontal information
of several leaking instructions in a sub-optimal, yet efficient manner. To demonstrate
this, we provide two types of heuristic horizontal attacks on simulated leakages of a
1st-order secure gadget with 16 multiplications, namely RRM(1, 16, {{r1}, . . . , {r1}}).
First, we employ the chosen-tuple attack (C2), where the attacker chooses a (d+1)-tuple
of leakages whose values have been sufficiently denoised by averaging the respective
repetitions. The horizontal exploitation of this heuristic attack implies a small over-
head for the adversary, namely he needs to perform an averaging pre-processing step.
Consecutively, the adversary will employ the noise-reduced tuple in order to attack
using Correlation Power Analysis (CPA) [41]. The second heuristic attack that we
use in order to exploit horizontally the simulated traceset is a Soft Analytical Side-
Channel Attack (SASCA) [215], applied in the context of masking [98]. The SASCA
performs the same averaging during the preprocessing step of the first heuristic attack.



Continuing, it exploits the full state of a multiplication by constructing a factor graph
and using a belief propagation algorithm. The horizontal exploitation of SASCA
implies an overhead depending on the factor graph. The results of the two heuristic
attacks and the results of the naive-tuple CPA attack without noise averaging (C1) are
visible in Figure 4.6a. As expected, the additional effort w.r.t. horizontal exploitation
of the SASCA attack improves the success rate compared to C1 and C2.

Moreover, throughout this chapter we assumed an idealized leakage noisy leakage
model, namely independent shares that leak according to the identity function. In
practice, several devices showcase order reduction due to various device effects such as
glitches, distance-based leakages and coupling [161]. We demonstrate this effect on
Figure 4.6b, using a 3rd-order secure RRM scheme and the order-reduction theorem of
Balasch et al. [12], which states that distance-based leakages can reduce the security
order from d to bd−1

2
c. The red and blue lines of Figure 4.6b give the lower and upper

security bounds caused by a large class of real-world leakage flaws.

(a) Success rate of naive, chosen-tuple and
SASCA attacks on simulated traces of 1st-
order secure RRM with frm = 16.

(b) Security of 3rd-order secure RRM scheme
under ideal (blue line) and order-reduced leak-
age (red line). The order-reduced line is equiv-
alent to 1st-order secure RRM.

Figure 4.6: Practical attacks and realistic leakage models

On the necessity of a noise-based analysis. We conclude this section by show-
casing the importance of a noise-oriented analysis of RRM using the following custom
scenario. Assume an RRM gadget that recycles a single random number between
n 1st-order secure ISW multiplications with mutually independent inputs, where n
is large. Trivially, an ISW-based proof shows such a case to be secure, because the
adversary can probe only a single intermediate value and thus cannot view multiple
recyclings. Thus, we can recycle a random number infinitely while the scheme remains
probing-secure. In practice however, the noise level of the leaking random number
can be eliminated by averaging the recyclings. A noise-based analysis such as the MI
metric or the SASCA can exploit recycling horizontally and is essential to quantify
the security damage. If instead the attack remains naive, it may lure the evaluator
into a false sense of security.



4.3 Reduced Randomness Shuffling - RRS

Similar to masking, applying the shuffling countermeasure implies a non-negligible
randomness cost. Specifically, generating a permutation for shuffling k independent
operations of the same type requires k ∗ dlog2(k)e random bits, using a slightly-biased
version of the Knuth shuffle algorithm [122,216]. In a practical scenario, shuffling only
16 AES Sboxes requires 640 random bits in total6. In order to deal with this RNG
overhead, previous work on the shuffling countermeasure opted to reduce the amount
of possible permutations (random start index), to shuffle only in selected rounds
(partial shuffling) or to use non-homogeneous shuffle patterns, where the amount of
possible permutations varied between cipher layers [103,181].

Motivated by the recycling ideas of Section 4.2, we use a similar approach on the
popular shuffling countermeasure against side-channel analysis. Analytically, we put
forward the Reduced Randomness Shuffling (RRS) countermeasure which consists of
three shuffling variants that can alleviate the randomness cost involved. In Section
4.3.1 we analyze how RRS reduces the randomness cost compared to standard shuffling.
Section 4.3.2 analyzes the susceptibility of RRS to horizontal/multivariate attacks in
the noisy leakage model.

4.3.1 Reducing Randomness in Shuffling

To achieve the goal of RNG reduction, we explore the following three variants: parti-
tioned, merged and recycled shuffling. We demonstrate these three variants using a
generic structure of layers and independent operations. In particular, we assume that
the cipher we want to shuffle can be described by the layer set L = {L1,L2, . . . ,Ln}
that consists of sets Li, 1 ≤ i ≤ n. Every set Li describes s independent operations
that constitute this layer, e.g. Li = {oi,1, oi,2, . . . , oi,s}. The partitioning of a cipher
into layers and of layers into independent operations rests upon the countermeasure
designer and it is closely related to the cipher implementation. For instance, the
independent operations may range from whole cipher parts (e.g. shuffling Sboxes) to
individual assembly operations (e.g. shuffling key-dependent instructions). We will
refer to a Reduced Randomness Shuffling scheme that shuffles independent operations
according to the layer set L as RRS(L). In addition we specify the randomness cost
of the RRS countermeasure as the total RNG overhead required to shuffle the cipher
according to layer set L. Figures 4.7a-4.7d illustrate the application of RRS on a
layered structure.

The example of Figure 4.7a commences with an RRS scheme that shuffles a
cipher structure, using n = 2 layers and s = 4 independent operations per layer,
i.e. layer set L = {{o1,1, o1,2, o1,3, o1,4}, {o2,1, o2,2, o2,3, o2,4}}. Both layers are shuffled
using two different permutations on 4 operations, namely permutations PL14 and
PL24 . Thus, the randomness cost for a single execution of the 2-layer structure is
|L| ∗ |Li| ∗ dlog2(|Li|)e = 2 ∗ 4 ∗ log2(4) = 16 bits.

6The cipher runs for 10 rounds, permuting 16 independent operations of the same type (Sbox)
per round. Every permutation requires 16 ∗ dlog2(16)e random bits.



To scale down the randomness cost, partitioned shuffling splits vertically a set
of independent operations Li into two or more smaller subsets that are cheaper to
shuffle. For instance, in Figure 4.7b, instead of shuffling a single set of 4 independent
operations L1 = {o1,1, o1,2, o1,3, o1,4}, we opt to partition L1 in two subsets of 2
independent operations each. Thus, we will partition L1 to L′1 = {o1,1, o1,2} and
L′′1 = {o1,3, o1,4}. An analogous partitioning is done in L2, resulting in L′2 = {o2,1, o2,2}
and L′′2 = {o2,3, o2,4}. We define the granularity of this vertical partitioning as the
partition factor fp, where fp = 1 implies no partitioning. Performing partitioned
shuffling with factor fp on |Li| independent operations reduces the randomness cost of
layer i to |Li| ∗ dlog2(|Li|/fp)e. In the example of Figure 4.7b, we use fp = 2 on both

cipher layers and we replace PL14 and PL24 with P
L′1
2 and P

L′2
2 respectively, reducing

the cost of a single execution from 16 to 8 bits.
To similar ends, the merged shuffling variant combines several cipher layers horizon-

tally in order to permute them together. The example of Figure 4.7c views L1 and L2 as
a single layer and shuffles them using the same permutation. That is, we merge PL14 and
PL24 into permutation PL

′′
4 , s.t. L′′ = {{o1,1, o2,1}, {o1,2, o2,2}, {o1,3, o2,3}, {o1,4, o2,4}}.

We define the granularity of this horizontal combination as the merge factor fm, where
fm = 1 implies no merging and observe that merged shuffling can reduce the random-
ness cost of a single iteration to (|L|/fm)∗k∗dlog2(|Li|)e. Naturally, merging and parti-
tioning can be combined, resulting in randomness cost of (|L|/fm)∗|Li|∗dlog2(|Li|/fp)e
bits per iteration. Still, different cipher layers can present a different number of in-
dependent operations for partitioned/merged shuffling and thus may need to be
homogenized by shuffling additional dummy operations.

Last, recycled shuffling opts for the “external” recycling of the generated permuta-
tion, i.e. we reuse a permutation between different executions or rounds of the cipher
structure. In Figure 4.7d, the layer L1 of cipher execution no. 1 and the layer L1 of
cipher no. 2 are independent, yet they are shuffled with the same permutation PL14 . We
define the recycle factor of shuffling frs as the number of repetitions of a permutation
in different cipher iterations, i.e. frs = 1 implies no recycling. Recycled shuffling can
reduce the randomness cost of a certain layer i from (#executions) ∗ |Li| ∗ dlog2(|Li|)e
to (#executions/frs) ∗ |Li| ∗ dlog2(|Li|)e.

We note that only recycled shuffling implies an overhead due to storage units
and store/fetch instructions, while partitioned and merged shuffling simply use less
randomness. The overhead relates to the recycle factor of shuffling, i.e. reusing the
same permutation results in frs extra store/fetch instructions and a memory unit to
store the random number.

On the application of RRS to the AES cipher. Assume that the countermeasure
designer focuses on the first two layers of the AES cipher, namely KeyAddition (ka) and
Sbox (sb). The standard way to shuffle them would require two permutations on 16 inde-
pendent operations, i.e. PKA

16 and PS
16, costing 128 random bits per round, resulting in

1280 bits for 10 rounds of AES. Alternatively, the designer can opt to partition both lay-
ers with partition factor fp = 4, i.e. split {ka1, . . . , ka16} and {sb1, . . . , sb16} into sets



{ka1, . . . , ka4}, {ka5, . . . , ka8}, {ka9, . . . , ka12}, {ka13, . . . , ka16} and {sb1, . . . , sb4}, {sb5, . . . , sb8},
{sb9, . . . , sb12}, {sb13, . . . , sb16} respectively. Thus, the cost is reduced to 640 bits
(PKA

4 and PS
4 for 50% RNG reduction). In a similar fashion, the designer can merge

the KeyAddition and Sbox layers into a single layer, i.e. L = {kasb1, . . . , kasb16},
reducing again the cost to 640 bits (PKA,S

16 for 50% RNG reduction). Finally, any
generated permutations on KeyAddition, Sbox can be recycled in subsequent AES
executions, reducing RNG even further, at the penalty of extra storage.
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Figure 4.7: Initial, partitioned, merged and recycled shuffle is applied to the layered
cipher structure in Figures (a) - (d). Dashed-line boxes indicate the operations
and layers that are shuffled with the same permutation. The arrows indicate the
information flow between layers.



4.3.2 RRS Noise Amplification

As expected, reducing the randomness cost of shuffling has a direct impact on the noise
amplification effect of the countermeasure, offering an interesting randomness-security
tradeoff for the designer. Similarly to Section 4.2.3, we evaluate the variants of RRS
via the mutual information framework and consider an adversary that can exploit
horizontally more than a single cipher layer. We perform our evaluation on the layered
cipher structure used previously, where the adversary attempts to recover any part of
the key k = (k0, k1, k2, k3) that is related to the 4 independent operations of L1 and
L2. To that end, he may exploit the leakage from both layers as well as direct leakage
from the permutations used to shuffle these layers. Below, we introduce the random
variable notation that describes shuffling in the noisy leakage model.

� The adversary can observe the leakage vector after every cipher layer, namely LL1

and LL2 . The leakage variables Li depend on the layer permutations PL1n and
PL2n , thus it holds that LL1i = Lid (X

P
L1
i

) + noise and LL2i = Lid (Y
P
L2
i

) + noise,

where noise represents additive Gaussian noise N (0,σ2).

� The adversary can observe the direct permutation leakage of every shuffled layer,
namely L′L1 and L′L2 . For layer permutations PL1n and PL2n , it holds that L′L1i =
Lid (PL1i ) +noise and L′L2i = Lid (PL2i ) +noise, where noise represents additive
Gaussian noise N (0,σ2).

To analyze the tradeoff between the MI level and the randomness cost, we perform the
MI-based evaluation for several versions of the RRS and attack options. The cases are
demonstrated in Table 4.5. The evaluation uses the formula by Charvillon et al. [216],
which we update in order to account for the partitioned, merged and recycled shuffling
with factors fp, fm and frs respectively.

MI(Kt; L) = H[Kt] +
∑
kt∈Kt

Pr[kt] ·
∫

l∈Lη

Pr[l|kt] · log2Pr[kt|l] dl where

Pr[kt|l] =
Pr[l|kt]∑

k∗t∈Kt
Pr[l|k∗t ]

and Pr[l|kt] =
∑
p∈Pθ

Pr[l′|p]∑
p∗∈Pθ Pr[l

′|p∗] · Pr[l|kt, p]

In the formula above, we assume that the adversary attacks a certain key part

Kt, where t ∈ {0, 1, 2, 3}. We also note that the adversary in general exploits
η-dimensional leakage vectors L, L′ and performs summations over the set of θ-
dimensional permutations. In the following analysis we show how parameters η
and θ relate to the particular RRS variant used as well as the adversary’s horizontal
capabilities (i.e. the number of layers attacked). The results of the MI-based evaluation
are visible in Figures 4.8a,4.8b.

In Table 4.5, case D1 , the adversary attacks a standard shuffling scheme where
no randomness reduction is performed. We assume again the reduced block cipher
structure with two layers, k = 4 independent operations per layer and a two 4-
dimensional permutations PL14 , PL24 for shuffling them. The adversary attacks a single



(a) MI evaluation for partitioned and merged
RRS schemes on 2 layers, without direct
permutation leakage (cases D1, D2, D3).

(b) MI evaluation with and without direct
permutation leakage, for parameters fp =
2, fm = 2, frs = 2 (cases D4, D5).

Figure 4.8: RRS MI evaluation

Case No. of layers
attacked

Direct permutation
leakage exploited

Partition
factor fp

Merge
factor fm

Recycle
factor frs

No RRM (D1) 1 no 1 1 1
Partitioned (D2) 1 no 2 1 1

Partitioned, merged (D3) 2 no 2 2 1
Partitioned, merged,

recycled (D4) 2 no 2 2 2
Partitioned, merged,

recycled,
direct perm. leakage (D5) 2 yes 2 2 2

Table 4.5: Reduced Randomness shuffling schemes analyzed in the context of single-
layer and two-layer horizontal attacks, with/without direct permutation leakage.

layer, i.e. he focuses solely on the 4-dimensional leakages LL1 observed in layer L1.
Disregarding layer L2 implies integration over 4-dimensional leakages, i.e. parameter
η = k = 4. In addition, the permutation that the adversary needs to consider in
the attack is 4-dimensional, resulting in parameter θ = k = 4. Continuing, case
D2 evaluates a single-layer attack on an RRS scheme where both L1 and L2 layers
use partitioned shuffling with factor fp = 2. In this case, the adversary evaluates
by focusing on the 2-dimensional leakages of layer L1, which are shuffled by a 2-
dimensional permutation PL12 . In other words, it holds that η = θ = k/fp = 2. The
MI curve of D2 is shifted to the right of curve D1, so we show that reducing the
number of available permutations via partitioned shuffling is detrimental to the noise
amplification stage.

Case D3 evaluates a two-layer attack on an RRS scheme that combines parti-
tioned and merged shuffling with factors fp = 2 and fm = 2. Specifically, layers

L1 and L2 are merged and shuffled together with permutation P
(L1,L2)
2 . The ad-

versary takes advantage of this fact and targets both layers in order to extract
more information horizontally. The attack uses leakage vectors (LL1 , LL2), so η =

(#no attacked layers)∗ (k/fp) = 4 and the only permutation in place is P
(L1,L2)
2 , thus



θ = k/fp = 2. The MI curve of D3 is shifted to the right of curve D2, showing that
merged shuffling can improve the effectiveness of multi-layer horizontal attacks and it
is detrimental to the MI level.

Last, we compare partitioned, merged and recycled shuffling (case D4) with equiv-
alent shuffling that can observe the repeated direct permutation leakage. Specifically,
in both cases, the adversary exploits horizontally two partitioned layers that use the
same permutation, i.e. η = 4 and θ = 2. Note however, that in case D5 the adversary
can also observe the repeated direct permutation leakage, i.e. he has access to L′L1j
for all executions j = 1, . . . , frs, while D4 assumed equiprobable permutations. As a
result, in case D5, the adversary can reduce the noise level of the direct permutation

leakage by computing L′L1 ∼ N (µL1 , (1/frs) ∗ Σ), where Σ a diagonal covariance
matrix. Figure 4.8b shows how exploiting the direct permutation leakage enhances
the attack.

4.4 Conclusions & Future Directions

In this chapter, we have performed an in-depth investigation of low-randomness
alternatives to standard masking and shuffling, namely RRM and RRS. The first core
outcome is that RRM and RRS can offer effective tradeoffs between randomness cost
and security. A designer of side-channel countermeasures can now rely on the MI-based
evaluation and provide optimized and flexible protection that reduces the randomness
cost. The second core outcome of this chapter is demonstrating the importance of
horizontal exploitation in masking and shuffling. We have shown that univariate (or
partially horizontal) evaluations provide us with only a part of the whole picture and
may lure the evaluator into a false sense of security. By examining the multivariate
adversarial model, we exploit a larger quantity of the available leakage and provide
a more complete security evaluation. This notion of multivariate security will be
revisited in Chapter 5, where similar horizontal attacks can be deployed. Last, this
chapter has demonstrated the necessity of noise-based analysis as a complement to
formal methods. We maintain that a sound evaluation approach is to start from a
provably secure scheme and enhance it with a noise-based analysis in order to provide
a more holistic view.

With regards to future work, we note that multivariate evaluation techniques
are still at a nascent stage when it comes to real-world devices. In fact, research
efforts concentrate on a fairly high abstraction layer, i.e. they only consider leaky
cipher operations. As a result, they disregard many peculiarities and defects of the
hardware and physical layers that we have encountered in Chapter 3. Future research
needs to strive towards integrating this complexity in our evaluations and improve
the attacks that are able to exploit horizontally RRM and RRS. Moreover, we have
just begun unveiling the subtle interactions between countermeasures, randomness
and security. This chapter marks the first departure from the common triptych
of design-implementation-evaluation and tries to reconfigure the countermeasure’s
security through RNG. The next chapter will keep investigating such interactions and
tradeoffs, albeit in the context of fault injection countermeasures.









Chapter 5

The Price of Fault Resistance

“Remember to pay attention to real objects in time and space and not lose them in utterly
idealized abstractions. Remember that the qualitative effects of context and interaction may
be lost when phenomena are isolated.”

Richard Lewontin, 2009

Confirming the quote of Richard Lewontin on dialectical biology, Chapter 3 has
demonstrated extensively how idealized abstractions of masking schemes can fall short
of our expectations when applied in a real-device context. Continuing, Chapter 4
has highlighted the interaction between randomness and side-channel resistance, two
phenomena that were often treated separately. In the same spirit, this chapter studies
the interaction between two frequently isolated phenomena, namely side-channel
resistance and fault injection resistance. We shall see that they constitute opposing
forces in hardware security and thus, similarly to Chapter 4, we yearn for a clear
understanding of the subtle interactions between them.

Side-channel analysis and fault injection attacks have coexisted since the early
days of hardware security, with early FI attacks dating back to 1997, where Boneh et
al. showed that only a single computation fault is sufficient to extract an RSA private
key [37]. Like SCA, fault injection has become a rich research field where designers
and implementors are working together to secure cryptographic primitives. In this
chapter we focus on two core research trends of the FI field and subsequently use them
to clarify the interactions between FI and SCA. Analytically, we focus first on popular
countermeasures against FI such as duplication, n-plication and infection [210], all of
which attempt to thwart faults by adding redundancy to an existing cipher (we shall
refer to this as a posteriori redundancy). Second, we focus on a more recent trend,
namely new ciphers such as FRIET [190], which attempt to tackle the FI problem
during the early stages of cipher design. This approach designs a cipher with built-in
protection against faults and integrates error detection directly in the cipher structure
(we shall refer to this as a priory redundancy). Both trends are subsequently examined
from the viewpoint of a side-channel adversary, who will exploit these diverse forms of
redundancy and enhance his SCA attack.

This chapter is based on work published in [59] and [190] and can be viewed as
a continuation of the works of Regazzoni et al. [175]. It is motivated by the need to



study the interactions between SCA and FI and balance the tradeoff between these
two opposing forces. Throughout this chapter we will confirm once again the quoted
warning, that is if we treat side-channels and fault injection resistance in an isolated
manner, the evaluator can be lured into a false sense of security. On the contrary,
viewing hardware security as an interaction between SCA and FI can yield a better
understanding and provide new options for the countermeasure designer. The main
points of the chapter are summarized below.

� This chapter demonstrates the “price” of fault resistance, i.e. it assesses the
impact of FI countermeasures (a posteriori redundancy) or FI-resistant ciphers
(a priori redundancy) on side-channel analysis resistance. The chapter employs
several multivariate exploitation techniques in theory and practice and demon-
strates that the added redundancy can enhance the side-channel adversary and
result in stronger attacks.

� Since most secure hardware or software elements require protection against both
side-channel and fault attacks, this chapter can serve as a guideline for the
countermeasure designer. Whether he opts to add redundancy on an existing
cipher or he opts for a new cipher with built-in redundancy features, the designer
can customize the fault injection resistance, while minimizing its impact on
side-channel resistance. Note that this adaptive process can be carried out in
conjunction with fine-tuning RNG and side-channel resistance (as shown in
Chapter 4), thus it expands the design space of SCA/FI countermeasures.



5.1 Introduction

When developing a secure device, we do not often encounter cases where side-channel
analysis is the sole security requirement. Another big class of hardware attacks and
exploits relies on the fault injection techniques. The later can change the data under
computation, skip critical parts of the control logic and in general alter the behavior
of the underlying circuitry. To prevent fault attacks, a multitude of countermea-
sures/structures have been investigateds. Software-based instruction redundancy
methods for fault detection were put forward by Barenghi et al. [16]. In this technique,
the original stream of instructions to be executed is duplicated (or even triplicated),
one instruction after another, either manually or automatically [18,137,151]. To the
same end, Tupsamudre et al. [210] put forward the infection countermeasure, where
dummy rounds diffuse the injected faults, making attacks harder. Ishai et al. [110]
extended the well-known ISW masking scheme to protect against tampering for an
arbitrary order of circuit alterations. Naturally, all these algorithmic countermeasures
imply additional computation and rely on redundancy to achieve their stated goals.
However, any form of redundancy during a cipher computation implies a larger amount
of side-channel leakage information. Thus, motivated by the increased amount of
available information, this chapter investigates the relationship between SCA and FI
resistance.

5.1.1 Chapter Contribution

Starting, this chapter takes an in-depth look at the tradeoff between FI resistance and
SCA resistance by investigating FI countermeasures and new cipher structures with
build-in FI protection.

We examine the interaction between n-plication and side-channel resistance and
demonstrate the theoretical tradeoff using an information-theoretic approach. Similarly,
we showcase the impact of infection [210] countermeasures on side-channel security by
employing the Hidden Markov Model. On the experimental side, we show how practical
horizontal exploitation techniques can leverage the extra side-channel information
introduced by duplication-based defenses. The results are based on experimental
acquisitions on AVR XMEGA128D4 and demonstrate improvements over naive CPA-
based techniques.

In addition, this chapter describes the novel FI-resistant design of FRIET [190], a
cipher with build-in fault detection capabilities. In order to assess how the build-in FI
resistance affects side-channel attacks, we employ the Soft-Analytical Side-Channel
Attack to exploit the leakage emitted by the full FRIET round. The results show
that fault-detecting structure is exploitable and can indeed enhance SCA. Moreover,
we demonstrate that this structure reveals less information compared to duplication,
while both techniques provide the same level of FI resistance.



5.1.2 Previous Work

In this section, we describe the existing work that investigated the interactions between
FI and SCA. First, we iterate through the previous work that identified the SCA
impact of FI countermeasures. Second, we iterate through different lightweight cipher
designs and observe how they are becoming increasingly aware of hardware security,
including FI attacks.

FI countermeasures. Regarding a posteriori redundancy, Regazzoni et al. [177] first
looked at the interaction between fault injection defenses and side-channel attacks.
Specifically, they studied an AES implementation with parity-based error detection
circuitry. They conclude that the presence of a parity error detection circuit will leak
important information to an attacker through side-channels. One year later, Regazzoni
et al. [176] experimentally show the exploitability of a known-by-the-attacker error
detection circuit. Pahlevanzadeh et al. [156] look at three fault detection methods
designed specifically for AES: double module redundancy, parity checks, inverse ex-
ecution; all implemented on an FPGA. They find that parity checks are actually
improving the resistance against standard CPA. Similarly, Luo et al. [136] use CPA to
attack an FPGA implementation of AES which is capable of fault detection. They
conclude that duplication does not improve the success rate of the attack in respect
to the unprotected AES implementation. However, we observe that the approaches of
[136,156] use naive CPA attacks and do not rely on multivariate, horizontal exploita-
tion of the leakage. We stress that such techniques can possible ignore parts of the
leakage, thus they do not reveal the full picture and may lure the side-channel evalu-
ator in a false sense of security. This chapter works towards amending such approaches.

FI-resistant design. Historically, hardware-oriented cipher design was primarily
geared towards cryptography that operates within limited area resources. Thus, the
initial focus was proposing block ciphers with small block size and a round function
that can be implemented compactly, culminating in the design of PRESENT [36],
KATAN/KTANTAN [44] and others. Recently, newer optimization targets emerged.
Low-latency led to PRINCE [38], tweakability led to Skinny and Mantis [27] and
low-power led to MIDORI [15]. Regarding side-channel resistance as an optimization
target, Noekeon [207] and the LS designs [95] factored in their design the number of
non-linear components. Thus, they manage to reduce the quadratic performance and
RNG overhead caused by masking multiplications. Most of the existing designs do
not take into account resistance to fault injection. Instead, FI resistance is considered
as an add-on solution that should be dealt with in the actual implementation. In this
chapter, we present a cipher that has build-in FI resistance and we work towards a
fair side-channel evaluation for this structure.

5.1.3 Chapter Organization

The chapter is organized as follows. Section 5.2 analyzes the price of a posteriori
redundancy (FI countermeasures) on side-channel resistance. Likewise, Section 5.3 an-



alyzes the price of a priory redundancy (FI-resistant cipher) on side-channel resistance.
Conclusions and future directions are provided in Section 5.4.

5.2 SCA Evaluation of FI Countermeasures

This section demonstrates the interactions between the redundancy-based FI coun-
termeasures and the side-channel resistance of an implementation that is employing
them. In Section 5.2.1 we analyze the theoretical impact of instruction duplication
and n-plication on SCA using an information-theoretic approach. Section 5.2.2 demon-
strates how to perform SCA on infective countermeasures using a Hidden Markov
Model that simplifies the exploitation phase of infection and makes it equivalent to
instruction duplication.

5.2.1 Theoretical Evaluation of Instruction Duplication

From the side-channel perspective, the ID countermeasure increases the available
leakage in a horizontal manner, either as a fault detection or as a fault tolerance
mechanism. Analytically, in the case of an unprotected implementation (without
ID) a univariate adversary can acquire the leakage of a key-dependent value v, i.e.
observe Lv ∼ N (v,σ), assuming identity leakage model. On the contrary, when
instruction n-plication is implemented (n > 1), the adversary can observe over time an
n-dimensional leakage vector Lv = [Lt=1

v , . . . ,Lt=nv ]. The vector contains n independent
observations of value v under the same noise level (homoscedastic noise), i.e. we
assume that Ltv ∼ N (v,σ), t = 1, . . . ,n.

Given that the side-channel adversary has located the sample positions of the
repeated leakages, he can perform a pre-processing step where he averages all available
samples that leak v, i.e. he computes L̄v = (1/n) ∗∑n

t=1 L
t
v. Exactly like averaging

recycled randomness in Chapter 4, this step results in noise reduction of factor
√
n, ob-

taining L̄v ∼ N (v,σ/
√
n) and as a result side-channel attacks can be enhanced. Note

that noise reduction can be particularly hazardous even when additional side-channel
protection is implemented. For instance, both masking and shuffling countermeasures
amplify the existing noise of a device [201,216] and will perform poorly if the noise
level has been reduced by a large factor

√
n. In order to demonstrate the effect

of noise reduction, we employ the information-theoretic framework of Standaert et
al. [197] which evaluates the resistance against the worst possible attack scenario.
The MI between the key-dependent value V and leakage Lv can be computed using
the following formula. The formula is exactly the same as the standard MI formula,
we just stress that value V is an intermediate value that is both key-dependent and
n-plicated because of the FI countermeasures. The leakage dimensionality n changes
accordingly to the FI countermeasures, e.g. n = 1 for unprotected, 2 for duplication,
etc. The results, including the averaging step, are visible in Figure 5.1.



MI(V ; Lv) = H[V ] +
∑
v∈V

Pr[v] ·
∫

lv∈Ln

Pr[lv|v] · log2 Pr[v|lv] dlv,

where Pr[v|lv] =
Pr[lv|v]∑

v∗∈V Pr[lv|v∗]
(5.1)
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Figure 5.1: MI of instruction n-plication

From Figure 5.1 we derive the following three conclusions. First, we observe that
n-plication (for n > 1) shifts the MI-curve to the right, i.e. the FI countermeasure
produces repeated leakages which have a direct impact on the side-channel security of
the implementation. Second, we note that a naively implemented ID may translate to
even more than two assembly instructions that manipulate the same value. For instance,
a high-level compiler cannot always guarantee the exact amount of instructions, leading
to more hazardous repetitions and curve shifts. Third, it follows that a countermeasure
designer needs to balance the need for side-channel resistance and FI resistance by
fine-tuning the parameter n according to requirements.

5.2.2 Theoretical Evaluation of Infection

It is important to point out that, not only straightforward instruction duplication, but
a wide variety of FI countermeasures rely on some form of spatio-temporal redundancy.
For instance, detection methods such as full/partial/encrypt-decrypt duplication and
comparison of a cipher [135] produce repetitions of intermediate values that are
exploitable by the side-channel adversary. Thus, an MI-based evaluation of duplication
and comparison is identical to Figure 5.1. Similarly, countermeasures that rely on
particular error detection/correction codes [139] also introduce redundancy that has
already been evaluated in the side-channel context by Regazzoni et al. [175]. In
this section, we expand in the same direction and examine the interaction between
side-channel analysis and the more recent infective countermeasure [210]1. Specifically,

1Infective countermeasures in this [210] section do not pertain to the modular arithmetic infective
techniques used by Rauzy et al. [173]



we demonstrate how the application of a Hidden Markov Model [77,172] in a low-noise
setting can render infective countermeasures equivalent to ID from a side-channel
point-of-view. Still, such countermeasures require a 2-step process involving first the
HMM attack and (if the first step is successful) the ID-like exploitation.

Infective countermeasures were developed as a solution to the vulnerabilities of
the duplicate and compare methods [116]. Instead of vulnerable comparisons, in-
fection diffuses the effect of faults in order to make the ciphertext unexploitable.
Several variants of the infective countermeasure exist, so this section focuses on the
countermeasure of Tupsamudre et al. [210], which has been proven secure against
DFA [163], given that the adversary cannot subvert the control flow and that certain
fault models are not applicable [26]. The countermeasure is shown in Algorithm 2.
Analytically, infection alternates between real, redundant and dummy cipher rounds
(step 8). It requires an r bit random number rstr (step 3), consisting of 2n 1’s
that trigger computation rounds (redundant or real) and (r − 2n) 0’s that trigger
dummy rounds (steps 5-7). In the event of FI, the difference is detected via function
BLFN : size(R)→ 1, where BLFN(0) = 0 and BLFN(x) = 1,∀x 6= 0. The error
is propagated via step 11.

Algorithm 2: Infection Tupsamudre et al. [210]

Input: Plaintext P , key K, round j key kj, ∀j = 1, . . . ,n, n number of
rounds, dummy plaintext β, dummy round key k0

Output: Ciphertext C=Cipher(P ,K)

1 Real R0 ← P , Redundant R1 ← P , Dummy R2 ← β
2 i← 1
3 rstr ∈R {0, 1}r . //r random bits
4 for q = 1 until r do
5 λ← rstr[q]
6 κ← (i ∧ λ)⊕ 2(¬λ)
7 n← λdi/2e
8 Rk ← RoundFunction(Rk, k

n)
9 γ = λ(¬(i ∧ 1)) ·BLFN(R0 ⊕R1)

10 δ ← (¬λ) ·BLFN(R2 ⊕ β)
11 R0 ← (¬(γ ∨ δ) ·R0)⊕ ((γ ∨ δ) ·R2)
12 i← i+ λ
13 q ← q + 1

14 end

15 return R0 ;

From a side-channel perspective, the infective countermeasure can be viewed as a
random sequence of r round functions, where only the 2n computation rounds are useful
for exploitation. Thus, the objective of the side-channel adversary is to uncover the
hidden sequence of rounds and to isolate the useful ones. Subsequently, one can exploit



e.g. the first redundant and first real round together via averaging, which is identical
to the afore-mentioned exploitation of ID. Distinguishing effectively dummy rounds
from computational ones is non-trivial, especially when extra randomization steps are
involved [88]. However, the presence of control logic in the infective countermeasure
such as variables λ,n and κ can emit noisy side-channel information about the sequence
of rounds. We model such leakage as Lc = [Λ,Z,K]+N (0, Σ), where the deterministic
part [Λ,Z,K] is defined over {0, 1}3 and N (0, Σ) denotes 3-dimensional noise vector
with zero mean and diagonal covariance matrix Σ (homoscedastic noise).

The suggested HMM is constructed the following way. We encode the main loop of
Algorithm 2 using two states, i.e. at a given time t, the state st = i ∈ {C,D}, where
C corresponds to a computational round and D to a dummy round. The transitions
in the sequence of states is described by matrix T , where Ti,j = Pr(st+1 = j|st = i).
Figure 5.2 shows the state diagram and the probabilities for matrix T, namely p = 2n/r.
We note that it is possible to unroll the loop and use additional states to describe
the transitions, such that we can fine-tune the probabilities. However, we opt for
such simple representation to minimize the model’s data complexity. In the HMM,
the round sequence s = [s1, . . . , sr] is unknown, but the adversary is assisted by
leakage observations [lt=1

c , . . . , lt=rc ]. To exploit the observations, the HMM associates
every state i ∈ {C,D} with an estimated emission probability function, i.e. emission
ei(l

t
c) = Pr(ltc|st = i).
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Figure 5.2: The infection Markov model describing the states, transition probabilities
T and prior probabilities Tpr.

Having established the HMM for our scenario, we perform a simulated experiment
where we try to identify the round sequence for a gradually increasing noise level.
The simulated sequence contains 22 computational rounds and 78 dummy rounds,
i.e. it corresponds to a computation of AES-128 using infection with r = 100. For
every noise level we apply the Viterbi algorithm [218], which can recover the most
probable sequence s of length r, while factoring in the leakage observations lt=1...r

c and
the transition probabilities of T. The simulation (Figure 5.3) shows that for fairly
small noise levels (e.g. σ < 0.3) we are able to uncover the hidden sequence with
high probability, making the side-channel exploitation of infection equivalent to the
exploitation of instruction duplication.
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Figure 5.3: Success rate of HMM-based sequence detection vs. noise level σ. Note that
for σ < 0.3 we are able to detect the most probable sequence with high confidence.

5.2.3 Practical Side-Channel Evaluation

In this section, we apply the exploitation techniques of Section 5.2.1 in our experimental
setup that protects an AES-128 implementation using ID. We verify the technique’s
applicability to real-world scenarios by showing their increased efficiency compared to
standard SCA methods.

5.2.3.1 Experimental Setup

We use an AVR XMega as the main target for our SCA experiments and we collect
power traces using the open-source ChipWhisperer product2. The clock frequency of
the target is 7.3728 MHz and we sample the power consumption of the target 4 times
per clock cycle approximately, at 30 MSamples/sec. The device-under-test can be
seen in Figure 5.4.

We use three different code patterns (Table 5.1) to evaluate the interaction between
SCA and ID in different scenarios. Listing A and B demonstrate how ID affects different
instructions, namely instructions eor and ld respectively. Listing C showcases the
duplicated key addition and Sbox parts of a lookup-table-based AES implementation.

2https://newae.com/tools/chipwhisperer/

https://newae.com/tools/chipwhisperer/


Figure 5.4: ChipWhisperer board, using AVR XMEGA128D4 for device-under-test.

A eor r10 , r17
B eor r10 , Y
C eor r9 , r17

add r28, r9
ld r10, Y

Table 5.1: Code snippets that are duplicated and then used for the SCA experiments.
Y is the output buffer and r17 contains the hardcoded secret key.

5.2.3.2 Horizontal Exploitation using CPA

For the afore-mentioned patterns, we perform an experimental evaluation where we
put forward a variant of the stardard CPA [41]. In the case of n-plication, we involve
a horizontal averaging pre-processing strategy as follows.

1. Locate the intervals pertaining to the n different repeated leakages. In every
interval, heuristically select the point in time with the highest correlation to the
targeted key-dependent value, obtaining vector l = [lt=1, . . . , lt=n].

2. For every vector l compute the average value l̄ = (1/n) ∗∑n
t=1 l

t, thus reducing
the noise level.

3. Perform CPA using the averaged values (l̄).

In Figure 5.5, we observe how the averaged CPA using a Hamming weight model
outperforms naive CPA that ignores horizontal leakage, since it requires less traces to
converge. Thus, the theoretical results of Section 5.2.1 are confirmed in practice and
we conclude that horizontal averaging rejects noise. In addition, the difference between
the naive CPA on the original code and averaged CPA on the duplicated code is larger
on the duplicated eor pattern rather than on the duplicated ld. This behavior is
attributed to the SNR of ld/st instructions, which is significantly higher compared



to the SNR of ALU operations (such as eor)3, since the later do not manipulate the
memory bus. As a result, there is less need to reject noise on memory instructions.
Last, we observe that a naive CPA attack when ID is in place may be slower to
converge due to interference between duplicated consecutive instructions.

Last, we note that although this section views n-plication as a fault tolerance
mechanism, the same averaging technique can be applied when n-plication is used as
a fault detection mechanism. In the latter case the instruction stream is the same as
before, therefore, the side channel is amplified in a similar fashion.
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(a) Code listing A.

0 15 30 45 60 75 90

# of traces, code B©

0

20

40

60

80

100

S
uc

ce
ss

ra
te

(%
)

single
no-avg
avg

(b) Code listing B.

Figure 5.5: Success rate of the CPA attack for listings A and B. single denotes CPA
on the original code. On duplicated code, no-avg denotes the naive CPA and avg
denotes CPA with averaging.

5.2.3.3 Horizontal Exploitation using Template Attacks

In order to fully exploit the available horizontal leakage, we also use a template-based
approach [50,54], which comprises two phases for attacking an AES-128 implementation:
a profiling phase, in which templates are built for 256 key candidates of an AES-128
key byte and an extraction phase, where a number of traces are used to recover
the unknown key. In our experiments, for the profiling phase, we use 3.2k traces
of the device per key candidate and perform dimensionality reduction, selecting
Points of Interest via Principal Component Analysis [9]. The sample interval used for

3SNR(A)=2.23 and SNR(B)=18.20



PCA compression is selected using the Pearson correlation heuristic. We deployed
the following two template attacks. To ensure that the side-channel effect of ID is
exploited during the heuristic step of POI selection, the first attack breaks the trace
in multiple intervals, each containing a single assembly instruction and performs POI
selection in every interval separately (single-interval TA). The second template attack
considers the full trace as a single interval and performs POI selection in the whole
region (multi-interval TA).

In Figure 5.6, we focus on code pattern C. We perform the CPA attack (naive
and averaged) that exploits the duplication of the ld instruction computing the Sbox
output. Moreover, we perform the multi-interval and single-interval template attacks.
We observe that both template attacks achieve similar performance and surpass the
averaged CPA. Thus, we verify the applicability of templates in a horizontal context
and conclude that they constitute an optimized way to exploit repeated leakages.
We note that template attacks are inherently multivariate and may often require an
extensive profiling phase to effectively characterize the model. On the other hand,
averaged CPA compresses multiple samples, i.e. it is a univariate technique with a
less informative model compared to templates, yet it has the upside of being faster to
train and compute.
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Figure 5.6: CPA vs. Template Attack on code listing C.

5.3 SCA Evaluation of FRIET

Having concluded the side-channel evaluation of FI countermeasures (a posteriori
redundancy), this section shifts focus to the side-channel evaluation of FRIET, a FI-
resistant cipher (a priori redundancy). Section 5.3.1 provides a description of the cipher
and its fault-detecting properties. Continuing, section 5.3.2 performs a horizontal
side-channel evaluation of FRIET using a Soft-Analytical Side-Channel Attack. The
attack manages to aggregate the leakage from the various FRIET components and
can gauge the side-channel impact of its custom fault-detecting structure.



5.3.1 FRIET Cipher Design

In this section, we describe the two structures related to FRIET. The first structure
describes the core FRIET permutation and does not include FI-detecting capabilities.
We refer to this as the compact FRIET round. The second structure, also referred to
as code-abiding FRIET round has an embedded a parity code [4,3,2]. The protection
offered by the parity code embedding is that faults in the computation are likely to
lead to a decoding error. In this case, the embedded code guarantees the detection of
any single fault in the computation.

Compact FRIET iteratively applies a round function on a state of 384 bits divided
in three limbs a, b and c of 128 bits. The round function Ri is composed of 6 steps:

� Two non-native limb transpositions τ1 and τ2

� Round constant addition δi: a limb adaptation

� Two mixing steps µ1 and µ2 that are limb adaptations

� A non-linear step ξ, also a limb adaptation

The nominal number of rounds of FRIET is 16. We specify the FRIET permutation
in Algorithm 3 using following notation. We illustrate the compact FRIET round
function in Figure 5.7.

� x⊕ y, the exclusive or (XOR) of limbs x and y,

� x ∧ y, the bitwise logical AND of limbs x and y,

� k � n, the logical shift to the right by offset n of the 32-bit constant k.

� x≪ n, the cyclic shift to the left by offset n of limb x.

We define a linear indexing of the state with i ranging from 0 to 383. a contains
the bits with indices 0 to 127, b those with indices from 128 to 255 and c those from
256 to 384.

Continuing, we embed FRIET with the parity code [4, 3, 2], creating code-abiding
FRIET that is now enhanced with fault-detection capabilities. For this purpose, we
need a checksum limb d and after every step we have d = a⊕ b⊕ c. The illustration
of the round function of code-abiding FRIET is visible in Figure 5.8.

Finally, we can compare code-abiding FRIET with the simplest code that can
detect single-limb faults: the straightforward code [2, 1, 2] where each bit is duplicated.
This code doubles both the state size and the computational cost. We provide a
comparison in Table 5.2 between compact FRIET, code-abiding FRIET and duplicated
FRIET. We observe that although duplicated FRIET and code-abiding FRIET are
equivalent from an FI point of view, duplication is a worse option computationally.
The same trend applies when comparing the SCA-resistance of code-abiding FRIET
with duplicated FRIET, as we will demonstrate in the next section.



Algorithm 3: Compact FRIET

Input: a, b, c ∈ {0, 1}128

Output: (a′, b′, c′) = FRIET (a, b, c)
1 for i 0 until 15 do
2 (a, b, c) ← Ri(a, b, c)
3 end
4 Here Ri is specified by the following sequence of steps:

c ← c⊕ (0x0012|0xf930b51d� i) δi
(a, b, c) ← (a⊕ b⊕ c, c, a) τ1

b ← b⊕ (c≪ 1) µ1

c ← c⊕ (b≪ 80) µ2

(a, b, c) ← (a, a⊕ b⊕ c, c) τ2

a ← a⊕ ((b≪ 36) ∧ (c≪ 67)) ξ

Figure 5.7: Compact FRIET round function Ri

FRIET version # limb operations per round total
XOR rotation AND shift # limbs

compact 8 4 1 1 3
code-abiding 8 8 2 2 4
duplicated 16 8 2 2 6

Table 5.2: Comparison of computational and storage cost



Figure 5.8: Round of code-abiding FRIET

5.3.2 FRIET Side-Channel Evaluation

Chapter 5.2 demonstrated clearly that that standard side channel attacks such such
as naive univariate CPA are often incapable of exploiting redundant information
added by fault countermeasures. To offer a holistic security analysis of code-abiding
FRIET, it is necessary to assess its security with respect to side-channel analysis in a
concrete manner. Section 5.2 has already demonstrated that any form of repetitions
or redundancy increases the exploitable side-channel information. As a result, in the
case of the FRIET fault-detecting permutation, the redundant 128-bit limb d can
enhance the available leakage and makes key recovery easier.

Like Section 5.2, we need to encompass all available leakage in our analysis in
order to provide a fully-fledged evaluation of a priori redundancy. Unlike, Section 5.2,
enhanced side-channel attacks such as correlation power analysis with averaging and
template attacks that target a single intermediate value may fail to fully capture the
leakage of the embedded code. The fact that such attacks are not able to reveal the
full picture, exacerbates the need for more concrete evaluation tools. To tackle this
issue, we use Soft Analytical Side-Channel Attacks by Veyrat-Charvillon et al. [215]
and Le Bouder et al. [131] in order to attack FRIET effectively. This particular attack
is able to exploit the entire structure of a cipher/permutation and it can naturally
integrate the added redundancy into the side-channel evaluation.

We investigated the impact of the parity limb d and code-abiding round on the
SCA vulnerability of FRIET with the Soft Analytical Side Channel Attacks [215].
SASCA is a horizontal type of side channel attack based on the Belief Propagation
algorithm [128]. The structure of the SASCA allows exploitation of leakages of any
instructions/gates and for our case it can also take advantage of the checksum-limb



(up to XOR limitation studied in [93,100]).
Our SASCA evaluation has the two following goals.

� Assess the effect of the fault-detecting capabilities to the side channel leakage of
FRIET.

� Compare the side channel leakage of code-abiding FRIET with that of a FRIET
implementation with simple duplication.

We construct two bipartite graphs following methodology introduced in [215], we
concentrate on 1-bit and leakage of the first round (the diffusion of FRIET made
propagation across round difficult as highlighted in [93]). The first graph corresponds
to compact implementation and the second one to code-abiding implementation. The
duplication method is analyzed by averaging the two leakages per intermediate value
and use the compact implementation graph as representation. Graphical representation
of the graphs are given in Figures 5.9 and 5.10.

Figure 5.9: Bipartite graph of code-abiding implementation.

We simulate the leakage measurements of each 1-bit intermediate variable v using
a Normal distribution N (v,σ2), where the mean is the identity leakage function of the



Figure 5.10: Bipartite graph of compact implementation.



variable and the standard deviation σ is the same for all variables. The goal of the
attack is to retrieve the value of the bit of the initial value of limb b (remark attacks
are similar for other bits, and can be recovery with independent attacks in order to
reduce computational cost of SASCA).

Figure 5.11 showcases the average success rate of the different simulated attacks
over 500 experiments for σ = 1 in function of the number of traces used for the attack.
Analyzing how fast the different success rates converge to 1, we can derive three core
observations.

� First, we conclude from the plot that every version of BP can exploit more
information than a straightforward template attack that focuses solely on a
single intermediate value and does not factor in the cipher’s structure. On the
contrary, BP learn the leakage of multiple intermediate values and joins this via
message propagation. Thus, we stress the necessity for horizontal exploitation
tools such as SASCA, due to the limited effectiveness of single-intermediate
statistical templates, which may result in misleading conclusions.

� Second we see that BP on code-abiding FRIET converges faster than BP on the
compact FRIET. Thus we are able to observe and quantify the extra leakage
penalty that is incurred by the extension.

� Third, we perform a comparison between code-abiding FRIET and duplicated
FRIET. We see that the BP attack on code-abiding FRIET structure converges
slower than that on duplicated FRIET. Hence extension leads to less exploitable
leakage than duplication. As a result, considering SCA and FI jointly, code-
abiding FRIET offers a better overall security level than duplicated FRIET.

Figure 5.11: Success rate of simulated SASCA



5.4 Conclusions & Future Directions

This chapter has performed a detailed investigation of fault injection resistance and
its impact on side-channel security. As a first outcome, we confirm that these two
concepts are in fact opposing forces in hardware security. We also confirm that SCA
gets enhanced when FI protection is in place. This notion persists throughout various
FI countermeasures (n-plication, infection), as well as FI-resistant cipher designs.
Finally, we confirm the practical applicability of FRIET, a FI-resistant cipher, since
we show that not only is it computationally better compared to duplication methods
but it also emits less side-channel information.

The conclusions of this chapter bear close resemblance to the conclusions of Chapter
4. Much like RRM/RRS, this chapter explored tradeoffs between randomness and
side-channel security, this chapter establishes the tradeoff between fault injection
resistance and side-channel security. Again, this opens up new design options for the
countermeasure designer, who can use the toolset of this chapter in order to fine-tune
a device according to requirements.

Regarding future work, the first natural step is working towards an integrated MI
framework that encompasses SCA, FI and RNG as design parameters. We strongly
believe that the plethora of interactions identified in Chapters 4, 5 need to be actively
used during the early design stages of a secure device, resulting in optimized constructs.

Concerning FI-resistant cipher designs, we note that FRIET is the first step in this
direction. Future work can strive towards developing a cipher design that has stronger
build-in FI-resistance. Next generation designs could consider multiple faults and
different fault models to protect against. Primary open targets are instruction-skipping
faults, as well as ineffective faults [74]. In the same wavelength, we note that we do
not often encounter cases were FI resistance is a product requirement, while SCA
resistance is out of scope. Thus, future designs can work towards merging both FI
and SCA requirements in a single cost-effective cipher structure.







Chapter 6

The Location Leakage Dimension

“I don’t like having to play catch-up in security, but we seem doomed to keep doing so.”

Bruce Schneier, 2010

So far, Chapters 3, 4 and 5 examine well-known vulnerabilities such as standard
side-channel and fault injection attacks. Siding with the defender, they implement and
optimize countermeasures, while being mindful of hazardous interactions between them.
However, a constant drive in hardware security research is the discovery of unknown
vulnerabilities (often called “zero-day” exploits), which reveal a new attack dimension
and bypass existing protection mechanisms. Playing catch-up, the industry is forced
to react swiftly and patch vulnerable products. Unfortunately, effective patching of
hardware implementations is difficult, if not impossible, and can lead to expensive
ad-hoc solutions and mass product recalls. Even after the initial turmoil caused by a
new exploit, the community usually comes up with focused countermeasures which,
once again, interact with existing ones in unexpected ways. This detrimental function
creep resembles the interactions between SCA and FI countermeasures of Chapter
5 and can reduce overall security. We do acknowledge that the a priori protection
against zero-day vulnerabilities is very hard to achieve. However, we stress that once
such an exploit is identified, we must strive to adequately model it and link it to
current attacks and countermeasures, facilitating quick reactions that do not weaken
existing protection.

This chapter’s goal is to effectively investigate a more recent exploit via statistical
modeling and subsequently protect against it, while being mindful of existing attacks
and countermeasures. To this end, it revisits a fairly recent vulnerability, namely
location-based side-channel leakage. Examined in multiple contexts by Sugawara et
al. [204], Heyszl et al. [105] and Messerges et al. [150], this potent yet uncommon
form of side-channel leakage originates from the fact that chip structures such as
memory and register file emit distinctive information when accessed. This new attack
dimension can bypass protected implementations that are well-equipped to withstand
the more prevalent data-based SCA. Analytically, this chapter first crafts an adequate
theoretical model for this recently identified exploit. Second, it performs an in-depth
practical evaluation using both standard statistical methods [50] and novel modeling
techniques [138]. Third, it examines countermeasures against location-based leakage



in the context of public key cryptography. Linking the new location-based SCA with
standard, data-based SCA leads to a hybrid attack and prompts a countermeasure
analysis with both location-based and data-based attacks in mind.

This chapter is based on work published/submitted in [7, 8, 209] and it deploys
microprobing evaluation setups, similarly to earlier work by Heyzl et al. [105]. While
exploring location as a new leakage “dimension”, we observe that we seem indeed
“doomed” to keep patching our designs with new countermeasures that account for
unforeseen exploits. In spite of this ceaseless patch cycle, we remain optimistic and
work towards swift reactions that can model the zero-day exploit, link it to our existing
protection mechanisms and lead to quick yet solid mitigation that does not deteriorate
our existing protection. The main points of the chapter are summarized below.

� This chapter examines the often overlooked location-leakage attacks and provides
a theoretical model to describe its effects. The model marks the first step towards
deeper understanding of such leakage effects and prompts closer examination of
a device’s physical layer.

� This chapter challenges the current statistical evaluation techniques such as
Pearson correlation and template attacks by putting forward deep learning
techniques for the location-based side-channel attack. Following the recent
research trends, we opt to use neural network classifiers and assess their potential
and limitations.

� Like Chapters 4 and 5, this chapter identifies interactions between different
types of countermeasures (data and location countermeasures) and analyzes
them jointly. The presented hybrid attacks confirms yet again the need for a
holistic approach in countermeasure design that factors in the various attack
dimensions that are available to the adversary.



6.1 Introduction

Location-based leakage is a fairly new leakage “dimension” that rises in many practical
scenarios, despite being a less common target of side-channel analysis. It stems from
the fact that chip components such as registers, memory regions or other storage units
exhibit leakage when accessed and such leakage is identifiable and data-independent.
Thus, the power or EM side-channel potentially conveys information about the location
of the accessed component, i.e. it can reveal the particular register or memory address
that has been accessed, regardless of the data stored in it. If there exists any
dependence between the secret key and the location of the activated component,
then a side-channel adversary can exploit it to his advantage and recover the key.
Although such attacks remain possible using standard power/EM equipment, they
were largely assisted by the advent of near-field microprobes, which have the capability
to isolate small regions of a chip surface and enable precise measurements with high
spatial resolution. Naturally, the appearance of yet another attack surface prompted
research, which unfortunately is not often carried in modern microcontrollers and is
not always linked to existing protection mechanisms. The discrepancy between the
high potential of location-based SCA and the small amount of attention it has received
so far motivates the work in this chapter.

6.1.1 Chapter Contribution

In this chapter, we provide a simple spatial model that partially captures the effect
of location-based leakages. The model is motivated by experimental data observed
in the SRAM of an ARM Cortex-M4 microcontroller. Subsequently, we use the
newly established model to simulate different theoretical scenarios that enhance or
diminish location-based leakage. We investigate the security of every scenario using
the perceived information metric [178].

Continuing, we perform the first practical location-based attack on the SRAM of a
modern ARM Cortex-M4, using difference-of-means, multivariate template attacks [50]
and neural network classifiers [138]. Using these techniques, we showcase attacks where
it is possible to distinguish consecutive SRAM regions of 128 bytes each with 100%
success rate and to distinguish between 256 consecutive SRAM bytes with 32% success
rate. As result, we conclude that EM location-based leakages are potent enough to
compromise the security of public key systems like elliptic curve cryptography and
symmetric key systems like AES implementations, should these systems use SRAM
lookup-tables.

Finally, we investigate the recently proposed countermeasure of Boolean exponent
splitting [209] from the perspective of location-based attacks. We use again the
information-theoretic framework of Standaert et al. [197] and the mutual information
metric to perform a security evaluation with a data-based attack and a location-
based attack. More importantly, we present for the first time a hybrid attack, where
data leakage is combined with location leakage and we analyze the countermeasure’s
effectiveness against it. The rich interactions between data and location leakage
corroborates the need for holistic countermeasures that encompass a wide spectrum of



side-channel attacks.

6.1.2 Previous Work

The research on location-based attacks is slightly fragmented, with attacks identified
in symmetric and asymmetric cryptography literature, using various devices that range
from ASICs and FPGAs to microcontroller units. We also note that location-based
leakages can be found in the literature as address attacks, originating from side-channel
analysis that exploits memory addressing to recover the secret key. Still, we prefer the
term location-based leakage, since this multifaceted attack can manifest in multiple
chip areas, including but not limited to memory units.

The work of Sugawara et al. [204] was among the first to demonstrate the pres-
ence of location-based leakage in an ASIC. In particular, they show that the power
consumption of the chip’s SRAM conveys information about the memory address that
is being accessed. They refer to this effect as “geometric” leakage since it relates
to the memory layout. Similarly, Andrikos et al. [8] performed preliminary analyses
using the EM-based location leakage exhibited at the SRAM of an ARM Cortex-M4.
The work of Heyszl et al. [105] manages to recover the secret scalar by exploiting
the spatial dependencies of the double-and-add-always algorithm for elliptic curve
cryptography. The experiments were carried out on a decapsulated FPGA, using
near-field microprobes that identify the accessed register. Schlösser et al. [184] use the
photonic side-channel in order to recover the exact SRAM location that is accessed
during the activation of an AES Sbox lookup table. This location information can
assist in key recovery, thus even cases of photonic emission analysis can be classified
as location-based leakage. Finally, side-channel countermeasures such as RSM [152]
rely on rotating lookup tables to mask the data. Location-based leakage can iden-
tify which lookup table is currently under use and potentially weaken the masking
countermeasure. Public key cryptography has taken already steps towards identify-
ing and mitigating location-based attacks by deploying algorithmic countermeasures.
Messerges et al. [149,150] and Itoh et al. [112] investigated such attacks on modular
exponentiation and scalar multiplication, prompting countermeasures from May et
al. [146], Itoh et al. [113] and Izumi et al. [114].

For the sake of clarity, in this chapter we distinguish between “location leakage”
and “localized leakage”. Location leakage arises when knowing the location of a
component (register, memory region, etc.) is assisting towards key recovery. On the
contrary, localized leakage arises when the adversary is able to focus on the leakage
of a specific (usually small) region of the chip. For example, recovering the memory
address accessed during an Sbox lookup implies location leakage. Being able to
measure the leakage right on top of a processor’s register file implies that the adversary
is capturing localized leakage. Note that capturing localized leakage can be useful for
data-based attacks as well as for location-based attacks. The works of Unterstein et
al. [211], Immler et al. [109] and Specht et al. [194–196] acquire localized leakage via an
EM microprobe in order to improve the signal-to-noise ratio of their data-dependent
leakage. The work of Heyszl et al. [105] uses the same technique in order to improve
the signal-to-noise ratio of their location-dependent leakage.



Again, for the sake of clarity we distinguish between ”location leakage” and
”address leakage” [113]. In our work, address leakage implies the leakage of addressing
mechanisms, e.g. the leakage of the control logic of a storage unit. Such leakage can
even be observed far from the storage unit itself, e.g. at memory buses or at the CPU.
Location leakage implies the leakage caused by such address leakage and the leakage
of the unit itself, which is often observed near it. We refer to the latter as ”spatial
leakage”, i.e. location leakage encapsulates both address-related and spatial effects.
For example accessing a table in memory requires indexing and memory addressing
in the CPU (address leakage). In addition, accessing causes the memory itself to be
activated (spatial leakage). The adversary is usually able to observe both types of
leakage and it is often hard to distinguish between them.

6.1.3 Chapter Organization

This chapter is organized as follows. Section 6.2 describes the microprobe-based
experimental setup on ARM Cortex-M4, shows a simple location analysis using
difference-of-means, and motivates experimentally the spatial part of location leakage.
The spatial leakage model is provided in Section 6.3, together with several theoretical
scenarios, and an evaluation using the perceived information metric. In Section 6.4
we demonstrate practical location attacks on ARM Cortex-M4 using multivariate
normal classifiers (template attacks) and Section 6.5 uses neural network classifiers
(convolutional neural networks and multi layer perceptrons) to the same end. Finally
Section 6.6 analyzes a side-channel countermeasure for elliptic curve cryptography
from the viewpoint of data-based and location-based leakages, culminating in a hybrid
attack. We conclude in Section 6.7

6.2 Simple Location-Based Analysis

This section describes a high-precision EM-based setup that is able to detect location
leakage on the surface of an ARM Cortex-M4 (Sections 6.2.1, 6.2.2). Having established
the capabilities of high-precision microprobe setups, we obtain intuition about the
location leakage that is caused by switching circuitry and is observable via EM
emissions on the die surface (Section 6.2.3). Throughout this chapter, we concentrate
on the following adversarial scenario. The device has implemented a key-dependent
cipher operation that uses a lookup-table (for symmetric or asymmetric cryptography)
and the adversary aims to infer which part of the table is active, i.e. uncover the
location information leading to key recovery.

6.2.1 Setup Description

The main goal of our experimental evaluation is to examine whether it is possible
to detect the access to different SRAM regions in a modern ARM-based device.
Rephrasing, we examine the device’s susceptibility to location-based attacks during
e.g. memory lookups for AES or register activation for modular exponentiation and



Figure 6.1: The chip surface of the device-under-test (ARM Cortex-M4) after removal
of the plastic layer. The approximate area of the ICR HH 100-27 Langer microprobe
is shown by the red circle (0.03 mm2).

scalar multiplication. Our measurement setup consists of a decapsulated Riscure
Piñata device1, using an ARM Cortex-M4 processor on a modified board, fabricated
with 90 nm technology. The decapsulated chip surface (roughly 6 mm2 ≈ 2.4 mm×
2.4 mm) is scanned using an ICR HH 100-27 Langer microprobe2 with diameter of
100 µm (approximately 0.03 mm2). The scan is performed on a rectangular grid
of dimension 300 using the Inspector tooling3, resulting in 300 × 300 measurement
spots. The near-field probe is moved over the chip surface with the assistance of an
XYZ-table with positioning accuracy of 50 µm. At every position of the scan grid, a
single measurement is performed, using sampling rate of 1 Gsample/sec and resulting
in 170k samples. Due to the complex and non-homogeneous nature of a modern chip,
several types of EM emissions are present on the surface, most of which are unrelated
to the SRAM location. In this particular case study, the signals of interest were
observed in amplitudes of roughly 70 mV, so we set the oscilloscope voltage range
accordingly. The signals of interest were identified visually, i.e. in these ranges we
could visually distinguish between large SRAM regions. Note that the voltage levels
exhibited large fluctuations among different chip regions. Thus, we cannot rule out
the possibility that different voltage ranges can also convey location information. In
addition, several device peripherals (such as USB communication) have been disabled
in order to reduce interference. The decapsulated surface where the scan is performed
is visible in Figure 6.1 and the approximate microprobe area is also overlaid on the
figure (in red) for comparison. The decapsulated Pinata device and the microprobe
setup are visible in Figures 6.2, 6.3.

To effectively cause location-dependent leakage, we perform sequential accesses
to a continuous region of 16 KBytes in the SRAM by loading data from all memory
positions. The data at all accessed memory positions have been fixed to value zero
prior to the experiment in order to remove any data-based leakage. The word size of

1https://tinyurl.com/y9tmnklr
2https://tinyurl.com/mcd3ntp
3https://tinyurl.com/jlgfx95

https://tinyurl.com/y9tmnklr
https://tinyurl.com/mcd3ntp
https://tinyurl.com/jlgfx95


Figure 6.2: Modified Pinata ARM STM32F417IG device.

Figure 6.3: Decapsulated Pinata and Langer microprobe ICR HH 100-27 on top.



this ARM architecture is 32 bits, i.e. we accessed 4096 words in memory. We opted
to access the SRAM using ARM assembly instead of a high-level language in order to
avoid compiler induced optimizations that could alter the side-channel behavior.

6.2.2 Difference-of-Means T-Test

The initial scan measurements were analyzed using a simple difference-of-means test.
To demonstrate the presence of location-based leakage, we partitioned every trace
(170k samples) into two classes. The first class contains SRAM accesses from the
beginning of the memory until word no. 2047 and the second class contains SRAM
accesses from word 2048 until word 4096. Each class corresponds to 8 KBytes of
SRAM. For every grid position (x, y), we averaged the leakages samples of class 1
and class 2 producing l̄class1 = 1

85k

∑85k
j=1 l

j
x,y and l̄class2 = 1

85k

∑170k
j=85k l

j
x,y respectively.

Continuing, we computed the difference of means l̄class1 − l̄class2 and we performed a
Welch t-test with significance level of 0.1% in order to determine if location-based
leakage is present. The results are visible in Figure 6.4, which is focusing on a specific
part of the chip surface that exhibits high difference.

Figure 6.4: Distinguishing two 8 KByte
regions of the SRAM with difference-
of-means. Yellow region indicates
stronger leakage from class 1 while blue
region from class 2. Differences below
the significance threshold are excluded.

Figure 6.5: Chip surface of ARM
Cortex-M4 after removal of the top
metal layer. The red rectangular region
corresponds to the difference-of-means
plot of Figure 6.4, i.e. it shows the
location where the highest differences
were observed.

6.2.3 Motivating the Spatial Leakage Model

In Figure 6.4 we can observe that location-dependent leakage is indeed present in
the ARM Cortex-M4 and it can even be detected through simple visual inspection
if memory regions are large enough (8 KBytes). Repeating the same difference-of-
means test for SRAM regions of 4 KBytes yields similar results, i.e. the regions



remain visually distinct. In both cases, we observe that these location dependencies
demonstrate strong spatial characteristics. That is, in Figure 6.4 we see two regions
at close proximity (yellow and blue) where the yellow region shows positive difference
between class 1 and 2, while the blue region shows negative difference between class 1
and 2. To investigate this proximity, we performed additional chemical etching on the
chip surface in order to remove the top metal layer. The result is visible in Figure 6.5.

The different regions (yellow and blue) shown in Figure 6.4 are observed directly
above the chip area enclosed by the red rectangle of Figure 6.5. Interestingly, after
the removal of the top metal layer, we see that the red rectangular region contains
large continuous chip components, possibly indicating that SRAM circuitry is present
at this location. This hypothesis is corroborated by the following fact: when we
perform difference-of-means test for 4 KByte regions, the yellow and blue regions
shrink, indicating that the leakage area is proportional to the memory size that is
being activated.

The approximate surface area of an SRAM component can be estimated as a =
m·abit
e

, where m is the number of bits in the memory region, abit is the area of a
single-bit memory cell and e is the array layout efficiency (usually around 70%) [220].
The value of abit ranges from 600λ2 to 1000λ2, where λ is equal to half the feature size,
i.e. for the current device-under-test λ = 0.5 ∗ 90 nm, thus the area of a 32-bit word is
between 55 and 92 µm2. Likewise, an 8 KByte region of the ARM Cortex-M4 amounts
to an area of approximately 0.12 until 0.19 mm2, depending on the fabrication process.
Notably, this area estimation is quite close to the area of the yellow or the blue
region of Figure 6.4, or equivalently, approximately half of the red rectangle in Figure
6.5. This observation further supports the relation between SRAM area and location
leakage area. Similar spatial characteristics have been observed by Heyszl et al. [105],
albeit in the context of FPGA registers.

Our initial conjecture that location leakages exhibit spatial characteristics is backed
by experimental evidence that suggest that A) proximity exists between leaky regions
and B) the area of leaky regions is approximately proportional to the memory size
that we activate. Section 6.3 builds up on these observations and develops a simple
spatial model that describes spatial leakage, yet we first need to provide the following
disclaimer.

Word of caution. The activation of a memory region can indeed be inferred by
observing spatial leakage, which according to experimental data is quite rich in location
information. Still, this does not imply that spatial leakage is the sole source of location
leakage. It is possible that location information is also revealed through address
leakage on the CPU and the memory control logic or buses when they process SRAM
addresses, or even by other effects such as imperfect routing [212]. Thus, modeling
spatial leakage captures part of the available information and can be considered as
the first step towards full modeling of location leakage.



6.3 Location Leakage Model

Unlike the well-established power and EM data leakage models [75,197], high-resolution
EM-based location leakage remains less explored. The main reason is the semi-invasive
nature of location attacks (often requiring chemical decapsulation), the time-consuming
chip surface scanning and the lengthy measurement procedures involved. Still, we
maintain that such attacks are increasingly relevant due to the fairly average cost
(approx. 15k euros), along with the widespread protection against data leakages [154,
180], which encourages attackers towards different exploitation strategies.

Hence, this section puts forward a theoretical model that describes the spatial
part of location leakage on a chip surface, caused by the EM emission of circuit
components. The model can be viewed as an extension of the standard data-based
model with independent noise to the spatial domain, encapsulating the complexity of
surface-scanning experiments. Following the proposed spatial leakage simulation of
Section 6.3.1, in conjunction with the information-theoretic framework of Section 6.3.2,
we can significantly enhance the design and evaluation cycle of SCA-resistant devices.
In particular, our approach allows the countermeasure designer to gauge the amount of
experimental work an adversary would need to breach the device using spatial leakage.
Thus, the designers can fine-tune any protection mechanisms to provide customized
and adequate level of security. At the same time they avoid lengthy design-evaluation
cycles as they can capture certain security hazards at an early design stage, using
simulation. Thus, the time-consuming leakage certification on the physical device can
be carried out at a later stage, once obvious defects have been fixed. Naturally, all
simulation-driven models (including this chapter section) have inherent limitations,
i.e. they are incapable to describe all the underlying physical phenomena, as we shall
see in Section 6.4. Still, avoiding core issues early on, can free up valuable time that
evaluators can invest towards device-specific effects such as coupling [58] and leakage
combination [161].

6.3.1 Model Definition and Assumptions

Experimental Parameters. We define a side-channel experiment ε as any valid
instance of the random variable set E = {S,O,G, A, P}. The experimental parameters
are shown in Table 6.1. We designate the experiment’s goal to be the acquisition

Parameter Description Unit
S chip surface area u2

O probe area u2

G scan grid dimension ¡no unit¿
A component areas vector with 1D entries of u2

P component positions vector with 2D entries of u

Table 6.1: Parameters of simulated experiment

spatial leakage L, i.e. obtain (L|E = ε) or (L|ε) for short. Much like Section 6.2,



the experiment consists of a probe scan over the chip surface in order to distinguish
between different components (or regions) and ultimately between different memory
addresses, registers, etc. The parameter S denotes the area of the chip surface on
which we perform measurements, e.g. s can be the whole chip die (6 mm2) or any
smaller surface. Parameter O denotes the area of the measuring probe that we use in
our experiments, e.g. the area o of the ICR HH 100-27 microprobe is roughly 0.03
mm2. Typically, we require o to be smaller than s in order to be able to isolate and
distinguish different regions on the surface. Continuing, parameter G denotes the
measurement grid dimensions, i.e. it specifies the resolution of a uniform rectangular
array of antennas [213]. In Section 6.2.1 we opted for g = 300. Continuing, the vector
parameters A, P describe the nc surface components that emit EM-based spatial
leakage. The parameter A = [A1,A2, . . . ,Anc ] describes the surface area occupied
by each component, e.g. in Section 6.2.3 we estimated the area of an 32-bit word
component to be at most 92 µm2. The parameter P = [P1, P2, . . . , Pnc ] describes the
position of every component on the chip surface, i.e. Pi is a two-dimensional vector.
For simplicity, we assume the geometry of the surface, probe and components to be
square, yet we note that the model can be extended to different geometrical shapes
in a straightforward manner. Moreover, we assume that the measuring probe can
capture only emissions that are directly beneath it, i.e. it functions like an identity
spatial filter with area o.

Control Parameter. Every device can use program code to activate different
components of the chip surface, e.g. by accessing different SRAM words through
load/store instructions. To describe this, we use an additional control parameter C
that denotes which components (indexed 1, . . . ,nc) are accessed during a particular
experiment ε. Analytically, C = [C1,C2, . . . ,Cnc ], where Ci = 1 if component i
is active during the experiment and Ci = 0 if it is inactive; for instance the vector
c = [0, 1, 0] implies that the surface has 3 components (nc = 3) and only component no.
2 is currently active. Note also that in our model only one out of nc components can
be active at a given point in time, since we assume that the ordinary microcontrollers
do not support concurrent memory access.4. Thus the parameter c uses the one-hot
encoding and we define vi as an nc-dimensional vector where all entries are zero except
for the ith entry. For instance, if nc = 3, then v3 is equal to [0, 0, 1] and it describes
the program state where only component no. 3 is active.

In general, we use the notation (L|E = ε, C = vi) or equivalently (L|ε, vi) to
describe a side-channel experiment ε that captures the leakage when the ith component
is active. For a location-based attack to be successful, we need to distinguish between
two (or more) different components using this spatial leakage. Formally, we need to
be able to distinguish between (L|ε, vi) and (L|ε, vj) , where i 6= j.

Representative Example. To elucidate the model, Figure 6.6 presents an experi-
ment ε using parameters {s, o, g, a, p} equal to {25, 3, 2, [0.8, 3], [[0.6, 1.5], [1.6, 4.1]]},
where all position parameters are in arbitrary units u and all area parameters are in

4Our approach can be easily modified in the case of parallel word processing.



square units u2. The experiment targets two components (nc = 2) and their position
is [0.6 u, 1.5 u] and [1.6 u, 4.1 u] respectively. The surface area s, probe area o, and
component areas a1 and a2 are respectively 25 u2, 3 u2, 0.8 u2 and 3 u2. The dimension
g of the measurement grid is 2, resulting in a 2 × 2 scan and we capture a single
measurement (trace) in every grid spot. We use the program code (control parameter)
to activate components 1 and 2, generating (L|ε, [1, 0]) and (L|ε, [0, 1]) respectively.
Note that in general (L|ε, vi) results in leakage with g2 dimensions, e.g. (L|ε, [1, 0]) is
a 4-dimensional vector. We refer to the leakage measured at any specified position
[x, y] as (L[x,y]|ε, vi) or simply L[x,y] when the experimental and control parameters
are clear from the context.
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Figure 6.6: Sample experiment ε. The × spots show the measurement points of
the 2 × 2 scan grid. Dashed black-line rectangles enclosing these spots denote the
measuring probe area o. Vectors p1, p2 show the position of two components (nc = 2),
whose areas (a1, a2) are enclosed by the solid black-line rectangles. The blue area d2

shows the area of component 2 captured by the top-right measurement point and the
yellow area d′2 shows the area of component 2 captured by the top-left measurement
point.

Independent Noise. In accordance with standard data-based leakage models,
we assume that for given parameters ε, vi, the leakage L[x,y] at any grid position [x, y]
consists of a deterministic part ldet[x,y], an algorithmic noise part Nalgo and an electrical

noise part N el, thus:
L[x,y] = ldet[x,y] +Nalgo +N el (6.1)

Deterministic Leakage. We assume that the deterministic part of the leakage ldet[x,y]

at position [x, y] is caused by the activation (switching behavior) of any component
that is captured by the probe at this grid position. Based on the experimental obser-
vations of Section 6.2.3, we assume the deterministic leakage to be proportional to the
area of the active component located underneath the probe surface, thus:



ldet[x,y]|vi =


0, if comp. i is not captured at [x,y]

di, 0 < di < ai, if comp. i is partially

captured at [x,y]

ai, if comp. i is fully captured at [x,y]

(6.2)

For example, Figure 6.6 shows that component 1 is fully captured by the probe on the
bottom-left grid spot, thus (ldet[down,left]|v1) = a1. Since no other measurement position

can capture component 1, it holds that (ldet|v1) = 0 for the other three grid positions.
On the contrary, component 2 is partially captured in two grid positions. Thus, it
holds that (ldet[up,right]|v2) = d2 (blue area), (ldet[up,left]|v2) = d′2 (yellow area) and zero
elsewhere.

Electrical and Algorithmic Noise. We employ the common assumption that
the electrical noise N el follows a normal distribution with zero mean and variance σ2

el,
i.e. N el ∼ Norm(0,σ2

el). The variance σ2
el is related to the specific device-under-test

and measurement apparatus that we use (probe, oscilloscope, amplifier etc.).
The algorithmic noise in our model is caused by components that, like the targeted

components, leak underneath the probe on measurement spot of the scan grid. However,
unlike our targeted components, they exhibit uniformly random switching activity
(equiprobable ‘on’ and ‘off’ states) that is independent of the control parameter c.
If na such components, with area parameter b = [b1, b2, . . . , bna ] are located under
the probe, then we assume again their leakage to be proportional to the respective
captured area. The leakage of these independent, noise-generating components is
denoted by Nalgo

i , i = 1, . . . ,na. Thus, Nalgo constitutes of the following sum.

Nalgo =
na∑
i=1

Nalgo
i , where Nalgo

i ∼ Unif({0, bi}) (6.3)

The algorithmic noise is highly dependent on the device-under-test, i.e. we could
potentially encounter cases where there is little or no random switching activity around
the critical (targeted) components, or we may face tightly packed implementations
that induce such noise in large quantities. For example, in Figure 6.6 the top-left
and bottom-right spots have no algorithmic noise, while the top-right and bottom-left
spots contain randomly switching components (red rectangles) that induce noise. Note
that the larger the probe area o, the more likely we are to capture leakage from such
components.

Algorithmic Noise in Tightly-Packed Surfaces. Since countermeasure designers
opt often for algorithmic noise countermeasures, we investigate the statistical vari-
ance of Nalgo for a tightly packed circuit that contains a large number of randomly
switching components which try to hide the targeted component. We assume every
noise-generating component to have area bi ≈ d, where d is the area of the targeted
component Since we assume large na, both the noise-generating components as well
as the targeted component are small w.r.t. the probe size, i.e. d � o. In a tightly



packed circuit, the probe area o contains roughly o
d

randomly switching components,
i.e. na ≈ o

d
. In this particular scenario, the following formula approximates Nalgo.

Nalgo =
na∑
i=1

Nalgo
i = d ·

na∑
i=1

Bi = d · A,Bi ∼ Bern(0.5) , A ∼ Binomial(na, 0.5)

(6.4)

Thus, Nalgo Central Limit−−−−−−−→
Theorem

Norm(
d · na

2
,
d · na

4
) (6.5)

Using the approximation of the Central Limit Theorem, we see that V ar[Nalgo] =
d·na

4
= o

4
. Thus, for the tightly-packed, small-component scenario we have established a

direct link between the probe area o and the level of algorithmic noise, demonstrating
how increasing the probe area induces extra noise.

6.3.2 Information-Theoretic Analysis

The proposed spatial leakage model of Section 6.3.1 is able to simulate the EM
emission over a chip surface and provide us with side-channel observables. Due to
the complexity of surface-scanning experiments, the model needs to take into account
multiple parameters in ε (component area, grid size, noise level, etc.), all of which can
directly impact our ability to distinguish between different regions.

In order to demonstrate and gauge the impact of the experimental parameters
on the side-channel security level, this section introduces an information-theoretic
apporach to analyze the following simple location-leakage scenario. Using the model of
Section 6.3.1, we simulate the spatial leakage emitted by the ARM Cortex-M4 SRAM,
while computing the AES Sbox using a lookup-table (LUT). We choose to simulate
this symmetric crypto algorithm (instead of a public key algorithm) due to the higher
level of flexibility and granularity that we can display in our experiments. Still, the
results are analogous in the case of modular exponentiation or scalar multiplication
in asymmetric systems. The ARM Cortex-M4 uses a 32-bit architecture, thus we
represent the 256-byte lookup table with 64 words (4 bytes each) stored consecutively
in SRAM. The LUT memory region is placed randomly on a chip surface with s = 0.6
mm2. Subsequently, our model can generate the leakage stemming from 64 chip
components (nc = 64), where each one occupies surface area pertaining to 4 SRAM
bytes. Using the simulated traceset, we perform template attacks [50] after PCA-based
dimensionality reduction [9], in order to distinguish between different LUT regions.
Note that LUT regions may consist of one or more words, yielding different granularity
options to the adversary. Naturally, being able to infer which SRAM region was
accessed can substantially reduce the number of AES key candidates. For instance,
the adversary may template separately the leakage of all 64 words (high granularity) in
order to recover the exact activated word and reduce the possible AES key candidates
from 256 to 4. Alternatively, he can opt to partition the LUT e.g. to two regions
(words 1 until 32 and words 33 until 64), profile both regions (low granularity), in
order to recover the activated 128-byte region and reduce the AES key candidates
from 256 to 128.



Formally, at a certain point in time, the microcontroller is able to access only
one out of 64 components (high granularity), thus the control variable c ∈ V =
{v1, v2, . . . , v64} and the adversary can observe the leakage of word-sized regions
(L|C = vi), for i = 1, 2, . . . , 64. Alternatively (low granularity), he can focus on |R|
memory regions and partition the set V to sets V1,V2, . . . ,V |R|, where usually Vr ⊂ V
and V i∩Vj = ∅, for i 6= j. We define random variable R ∈ R = {1, 2, . . . , k} to denote
the activated region and we represent the leakage of region r as (L|R = r) = (L|c ∈ Vr).
For example, in the high granularity scenario, the adversary observes and profiles
(L|v1), (L|v2), . . . , (L|v64), while in the low granularity scenario he profiles two regions
(R = {1, 2}) with V1 = {v1, v2, . . . , v32} and V2 = {v33, v34, . . . , v64}. Thus he can
obtain (L|R = 1) = (L|c ∈ V1) and (L|R = 2) = (L|c ∈ V2).

Having completed the profiling of regions for a certain experiment ε, we proceed to
the quantification of the location information, using the perceived information metric
(PI) [178] that is shown below.

PI(L;R) = H[R]−Htrue,model[L|R] = H[R]+
∑
r∈R

Pr[r]·
∫

l∈Lg2

Prtrue[l|r]·log2Prmodel[r|l] dl

where Prmodel[r|l] =
Prmodel[l|r]∑

r∗∈R Prmodel[l|r∗]
, Prtrue[l|r] =

1

ntest
,ntest test set size

(6.6)

PI can quantify the amount of information that leakage L conveys about the activated
region R, taking into account the divergence between the real and estimated distribu-
tions. Computing PI requires the distribution Prmodel[l|r], i.e. the leakage template
that is estimated from the training dataset. In addition, it requires the true leakage
distribution Prtrue[l|r], which is unknown and can only be sampled directly from the
test dataset. We opt for this metric since it indicates when degraded (under-trained)
leakage models are present, due to our choice of experimental parameters. Negative
PI values indicate that the trained model is incapable of distinguishing regions, while
a positive value indicates a sound model that can lead to classification.

By following the proposed spatial leakage simulation, together with the information-
theoretic framework we simulate several leakage scenarios for the data-independent
LUT case that emulates the AES Sbox operation. Sections 6.3.2.1 until 6.3.2.5
showcase how different experimental parameters hinder or enhance leakage, offering
several design options. To apply the theoretical model in an evaluation context we can
simply set our current device SNR to the information-theoretic graphs of the following
subsections.

6.3.2.1 Area and number of regions

The first simulation scenario examines the core attack question: using a certain
experimental setup with parameters ε = {s, o, g, a, p}, what is the smallest region size
that I can distinguish reliably? Rephrasing, we assess how much location information
can be extracted from the observed leakage by plotting the PI(L;R) metric against the



electrical noise variance σ2
el for certain ε and c parameters. We simulate an adversary

that distinguishes regions of an AES Sbox lookup-table using the following three
LUT partitions of increasing granularity. First, he partitions the 256-byte LUT to
2 regions of 128 bytes each (depicted by the solid line in Figure 6.7). Second, he
partitions the LUT to 8 regions of 32 bytes (dashed line) and third to 16 regions
of 16 bytes (dotted line). For every partition the adversary profiles the regions’
leakage (L|R = r) = (L|c ∈ Vr) for r = 1, 2, . . . , |R|, where |R| = 2 or 8 or 16 and
subsequently tries to distinguish. Note that surface s = 6 mm2, probe size o = 0.03
mm2 (ICR HH 100-27), feature size 90 nm and g = 100, i.e. the scan resolution is
100× 100. The component area a = 92 µm2 for all SRAM words and the words are
placed adjacent to each other, starting from a random surface position; we denote this
as p = random. Along with parameters ε and c, we need to include the measurement
complexity in our simulation. Thus, we specify the amount of traces measured at
every grid spot, resulting in an acquisition of g2 ·#traces. As expected, we observe

Figure 6.7: Effect of region partition-
ing of the 256-byte LUT to 2, 8 and 16
regions. Experimental parameters ε =
{6 mm2, 0.03 mm2, 100, 92 µm2, random},
capturing 10 traces per spot for a total
of 100k traces.

Figure 6.8: Effect of grid dimen-
sion g = 100, 40 and 20. Pa-
rameters ε = {6 mm2, 0.03 mm2,
g, 92 µm2, random}, distinguishing 4
regions of 64 bytes each and using 10,
62 and 250 traces per spot for a total
of 100k traces.

that experiments with higher region granularity yield more location information, as
shown by the vertical gaps of the PI metric in Figure 6.7. Still, we also observe that
smaller regions are harder to distinguish, even for low noise levels. Partitioning to
8 or 16 regions could optimally yield 3 or 4 bits of information respectively, yet the
dashed and dotted curves remain well below this limit. Thus, we observe that the
adversary may need to improve his experiment ε by measuring more traces, using
smaller probes or increasing the grid dimension in order to extract the maximum
location information.



6.3.2.2 Measurement grid dimension

Any side-channel experiment involving surface scanning can be particularly time-
consuming. For instance moving the Langer microprobe between adjacent positions
takes approximately 2 seconds, thus the 300× 300 surface scan carried out in Section
6.2 takes almost 2 days to conduct. Using the spatial leakage simulation, we are able
to specify the grid dimension g and find the minimum scan resolution required to
distinguish between certain SRAM regions. In Figure 6.8 we demonstrate the location
information captured when conducting scans with resolutions 100× 100, 40× 40 and
20× 20, taking approximately 6 hours, 1 hour and 15 minutes respectively. Across the
three simulations we maintain constant data complexity of 100k traces, distributed to
grid spots accordingly (10, 62 and 250 traces per spot). Figure 6.8 shows information
loss (vertical gap) as the grid dimension is decreasing, i.e. when trying to distinguish
4 regions only the 6 hour-experiment with 100 × 100 grid is able reach maximum
information (2 bits). Notably, we also observe that for larger noise levels, small grid
sizes with many traces per spot (dense measurements) are able to outperform larger
grid sizes with less traces per spot (spread measurements).

6.3.2.3 Feature size

A common issue encountered in the side-channel literature is the scaling of attacks and
countermeasures as devices become more complicated and feature size decreases [118,
144, 153]. This section uses our simple spatial leakage model to describe the effect
of feature size on SCA. In particular, it simulates the spatial leakage of SRAM cells
fabricated with 180 nm, 120 nm and 90 nm technologies, resulting in bit cell areas
of approximately 8 µm2, 3.5 µm2 and 2 µm2. The results are visible in Figure 6.9.
Naturally, smaller technology sizes can potentially limit the amount of available
information, as they decrease the region’s area and force the adversary towards more
expensive tooling.

6.3.2.4 Algorithmic noise

This section simulates the countermeasure of spatial algorithmic noise, when imple-
mented on the ARM device. Analytically, we examine the case where the designer
is able to place word-sized noise-generating components on the chip surface in order
to “blur” the spatial leakage of a targeted region and hinder recovery. The simulation
(Figure 6.10) uses formula (6.5) of Section 6.3.1 to approximate the algorithmic noise
when the probe captures the leakage of 11 SRAM words, one of which is the target word
(and reveals the critical region information) and the ten remaining words are randomly
activated at the same time. Note that such an algorithmic noise countermeasure would
require parallel accesses to the memory, thus it would be more natural to deploy it on
FPGA or ASIC devices. Observing Figure 6.10, we see the algorithmic-noise PI curve
(dashed line) shifting to the left of the PI curve without algorithmic noise (solid line).
Thus, much like data-based algorithmic noise [198], we see that randomly activating
words functions indeed as an SCA countermeasure.



Figure 6.9: Feature size of 180
nm, 120 nm, 90 nm and word
area a = 368 µm2, 163 µm2,
92 µm2. Parameters ε =
{6 mm2, 0.03 mm2, 40, a, random},
for 2 regions of 128 bytes each, 250
measurements per spot for a total of
400k traces.

Figure 6.10: Algorithmic
noise, using 10 noise-generating
words. Parameters ε =
{6 mm2, 0.03 mm2, 40, 92 µm2, random},
for 2 regions of 128 bytes each, 250
measurements per spot for a total of
400k traces.

6.3.2.5 Region proximity and interleaving

Last, we simulate the countermeasure of region proximity and region interleaving on
the ARM device, which was initially proposed on a very low design level by He et.
al [102] and also considered on a higher level by Heyszl [104]. Analytically, we assume
that the designer controls the place-and-route process and can place two memory
regions on the chip surface using the following three configurations.

1. Distant placement: the distance between the two regions is set at roughly 1 mm.

2. Close placement: the two regions are adjacent to each other.

3. Interleaved placement: the words of the two regions are interleaved together in
a checkered fashion, i.e. the 1st word of the SRAM belongs to the 1st region,
the 2nd word to the 2nd region, the 3rd word to the 1st region, etc.

Figure 6.11 demonstrates the effect of different placement choices, confirming the basic
intuition that higher proximity is essentially a countermeasure against location-based
attacks. The vertical gap in PI between distant, close and interleaved placement
shows that as components get closer, the attainable information decreases, forcing the
adversary to increase the grid size or use a smaller probe.

6.4 Exploitation Using Statistical Templates

Having established a theoretical model for spatial leakages, we move towards side-
channel exploitation with a practical case in mind. In particular, Sections 6.4 and
6.5 exploit the available location-based leakages in the ARM Cortex-M4 so as to infer



Figure 6.11: Effect of distant, close and interleaved placements (solid, dashed and
dotted line). Parameters ε = {6 mm2, 0.03 mm2, 20, 92 µm2, random}, distinguishing
2 regions of 128 bytes each and using 250 measurements per spot for a total of 100k
traces.

the accessed memory position of a 256-byte, data-independent LUT. Note that in
the real chip we cannot isolate spatial from address leakage, i.e. we observe location
leakage in its entirety. We use the template attack, i.e. we model the leakage using a
multivariate normal distribution and attack trying to identify the key, or in our case
region r of the SRAM.

In the our case study, the template attacks focus on identifying which region of
the SRAM is being accessed. The leakage vector (L|R = r) exhibits particularly large
dimensionality and can generate a sizeable dataset, even for modest values of the
grid dimension g. Thus, we employ dimensionality reduction techniques based on the
correlation heuristic so as to detect spatial points of interest (POIs) in the 300 ×
300 grid and use a train-test ratio of 70-30. In addition, when performing template
matching, we combine several time samples from the test set together (multi-sample
attack), in order to reduce the noise and improve our detection capabilities5. In a
sizeable dataset the template attacks are particularly demanding w.r.t. computational
resources and to tackle this problem, we opt for the improved template formulas
proposed by Choudary et al. [54] that use a pooled covariance matrix and numerical
speedups. The goal of our template-based evaluation is not only to answer whether
location exploitation is possible but also to gauge the effect of the experimental
parameters ε on the exploitation process. Thus, similarly to Sections 6.3.2.1, 6.3.2.2,
6.3.2.5, we will investigate the effect of region partition, grid dimension and region
placement in the real-world scenario. Unfortunately Sections 6.3.2.3 and 6.3.2.4 would
require control over the manufacturing process (i.e. several chips of different feature
size) or control over regions with algorithmic noise (i.e. parallel memory activation),
thus they cannot be tested in our current context. Throughout this section we will
engage in comparisons between the theoretical model of Section 6.2 and our real-world
attack, i.e. we will put the model’s assumptions to test, discover its limitations and

5Whether this constitutes an option depends on the situation. If any sort of randomization such
as masking or re-keying is present in the device then the adversary is limited in the number of attack
traces/samples that he can combine.



obtain more insight into the source of location leakage.

6.4.1 Region Partition

To observe the effect of partitioning, we gradually split the 256 bytes of the AES
LUT into classes and built the corresponding template for each class. We perform
a template attack on 2, 4, 8 and 16 partitions (with 128, 64, 32 and 16 bytes each
respectively), i.e. we gauge the distinguishing capability of the adversary, as the
number of components increases and their respective areas decrease. The results are
visible in Figure 6.12, which showcases how the number of grid positions (spatial POIs)
and time samples per attack affects the success rate (SR). The adversary can achieve

(a) 2 regions of 128 bytes
each

(b) 4 regions of 64 bytes
each

(c) 8 regions of 32
bytes each

Figure 6.12: The success rate of the template-based classifier as we partition the AES
LUT. Y-axis denotes the number of spatial POIs used in model, X-axis denotes the
number of time samples used in attack. Scale denotes SR where white is 100% and
black is 0%.

a success rate of 100% when distinguishing between 2 or 4 regions, assuming that he
uses multiple time samples in his attack. The success rate drops to 75% for 8 and 50%
for 16 regions, an improvement compared to random guess SRs of 12.5% and 6.25%
respectively. Although we are not able to reach successful byte-level classification, we
can safely conclude that location-based attacks are indeed possible on small LUTs
and they can reduce the security level of an AES implementation, unless address
randomization countermeasures are deployed. When performing single-sample attacks,
the template strategy becomes less potent, achieving SR of 57%, 33%, 17% and 11%
for 2, 4, 8 and 16 regions, i.e. only slightly better than a random guess. In order to
compare the success rate of the real attack to the theoretical model, we compute the
model’s SR for current device SNR under the same data complexity6. The model’s
single-sample SR is 99%, 50%, 13% and 12% for 2, 4, 8 and 16 regions respectively.
In this case, we observe that the model follows the same trend, yet the device leakage
exhibits divergences that indicate modeling imperfections.

6The template attack uses the experimental data, while the theoretical SR uses simulated data of
the same size and dimensionality.



6.4.2 Grid Dimension

Using the same approach, we evaluate the effect of grid dimension on the success rate
of the template attack. We commence with the full 300× 300 grid (2-day experiment)
and subsequently scale down to 40× 40 grid (1-hour experiment) and 10× 10 grid
(2-minute experiment). The results are visible in Figure 6.13. We observe that for

(a) 300× 300 grid (b) 40× 40 grid (c) 10× 10 grid

Figure 6.13: The success rate of the 2-region template-based classifier as we decrease
the experiment’s grid size.

small grid sizes such as 10× 10 the reduced dataset makes training harder, yet the
multi-sample template attack is able to distinguish with SR equal to 100%. On the
contrary, the theoretical model is unable classify correctly because the spatial POIs
are often missed by such a coarse grid. To pinpoint this model limitation, we assess
the spread of the POIs across the die surface and we visualize the best (according to
correlation) grid positions in Figure 6.14. Interestingly, we discover numerous surface
positions that leak location information, while being far away from the SRAM circuitry
itself. This observation is in accordance with the findings of Unterstein et al [211]
that observe various out-of-model localized leakages on FPGA devices. Overall, we
speculate that location leakage is a combination of SRAM spatial leakage (as in the
model) and other forms of leakage, stemming from different spatial components or
even temporal features.

Figure 6.14: Spread of spatial POIs on chip surface.



6.4.3 Placement

Finally, we evaluate the effect of region proximity and interleaving on the SR of
template attacks. We examine close placement (sequential SRAM regions), distant
placement (SRAM regions at a large distance7) and word-interleaved placement
(checkered SRAM regions). The results are visible in Figure 6.15.

(a) close (b) distant (c) word-interleaved

Figure 6.15: The success rate of the 2-region template-based classifier as we change
the placement of regions.

We observe that in all cases we reach multi-sample SR of 100%, in accordance with
the theoretical model at the device SNR. However, attacking the word-interleaved
LUT requires a bigger effort in modeling in terms of both grid POIs and samples per
attack. Likewise, distinguishing between distant regions puts a considerably less strain
on the model. Thus, we conclude that distance and interleaving does indeed function
like a countermeasure against location leakage, albeit it offers only mild protection in
our ARM device.

6.5 Exploitation Using Neural Networks

Despite the fact that the multivariate normal leakage assumption is fairly realistic
in the side channel context, applying distribution-agnostic techniques appears to be
another rational approach [133]. Over the past few years, there has been a resurgence
of interest in Deep Learning techniques, powered by the rapid hardware evolution
and the need for rigorous SCA modeling [43,138,141,142,171,222]. In this section,
we evaluate the performance of convolutional neural networks (Subsection 6.5.1) and
multi layer perceptrons (Subsection 6.5.2) in inferring the activated region of the AES
LUT on the ARM Cortex-M4. Interestingly, certain NNs are able to surpass the
template attacks in effectiveness, enabling stronger location-based attacks that use
less time samples and can distinguish between smaller regions.

7Note that without knowledge of the chip layout we cannot be fully certain about the distance
between memory addresses. Here we assume that the low addresses of the SRAM are sufficiently
distant from mid ones, which are approx. 8 KBytes away.



6.5.1 Convolutional Neural Network Analysis

Before developing and customizing our own CNN model, we evaluate the performance
of existing, state-of-the-art fully pretrained CNNs. Pre-trained models are usually
large networks that have been trained for several weeks over vast image datasets. As
a result, their first layers tend to learn very good, generic discriminative features.
Transfer Learning [157] is a set of techniques that, given such a pre-trained network,
repurposes its last few layers for another similar (but not necessarily identical) task.
Indeed, the objectives of our spacial identification task appear to be very close to
those of standard image classification. Moreover, as outlined in Section 6.2.1, our data
is formulated as 300×300 grid images, which makes them compatible with the input
format of several computer vision classification networks. For this first attempt at
CNN classification we use several state-of-the-art networks, namely Oxford VGG16
and VGG19 [191], Microsoft ResNet50 [101], Google InceptionV3 [206] and Google
InceptionResNetV2 [205]. It should be noted that the input format of these networks
is often RGB images, while our 300×300 heatmaps resemble single-channel, grayscale
images. To address this and recreate the three color channels that the original
networks were trained for, we experiment with two techniques; (1) we assemble
triplets of randomly chosen heatmaps, and (2) we recreate the three color channels by
replicating the heatmaps of the samples three times.

We apply the pretrained CNN classification on 2 closely placed SRAM regions of
128 bytes each. In accordance with the standard transfer learning methodology, during
re-training we freeze the first few layers of the networks to preserve the generic features
they represent. In each re-training cycle, we perform several thousand training-testing
iterations. Despite all these and multiple hours of training, none of the aforementioned
CNNs results into a retrained network with high classification success rate. In all
cases, the networks perform similarly to a random guess.

As a result of the low success rate of fully pretrained networks, we choose to
proceed with Xavier [89] weight initialization and training from scratch, working
towards custom pretrained CNNs. We observe that, despite the transformation of
the sequential problem (SRAM accesses over time) to a spatial one, our dataset is
dissimilar to visual classification datasets. Rephrasing, the images that we have to
cope with feature intricate characteristics having little resemblance with those of the
datasets that the pretrained CNN versions have been trained on, such as the ImageNet
dataset [71]. Moreover, due to the fully distribution-agnostic approach, any randomly
initialized CNN may suffer the effect of vanishing or exploding gradients, a danger
that Xavier initialization should eliminate. The framework that was used for training
and evaluating our customized CNNs is Keras [51] over TensorFlow [6] backend and
the customized CNNs tested were VGG19 [191], InceptionV3 [206], ResNet50 [101],
DenseNet121 [108] and Xception [52]. We also made use of the scikit-learn Python
library [164] for the preprocessing of our data. The execution of this customized
CNN training and testing was carried out in ARIS GRNET HPC (High-Performance
Computing) infrastructure8.

8https://hpc.grnet.gr/en/

https://hpc.grnet.gr/en/


To gauge the effect of SRAM memory addressing on the CNN training, all five
CNNs are trained in two ways, namely one-batch training and multiple-batch training.
During one-batch training we use location leakage from a single SRAM LUT, while
for multiple-batch traing we use four LUTs placed within a 16 KByte SRAM address
range. The dataset is split into training, validation and test sets using a 70-20-10
ratio and is standarized by removing the median and scaling the data according to the
quantile range. The networks are trained for 150 epochs of 32 images each, using the
Adam optimizer [120] with default parameters. The results are visible in Figure 6.16.

We observe that she single-sample success rate of the Xception network (green line)
exceeds by far all others’ at 84% and the SR improves in stability when using multiple-
batch training. It is worth noting that some CNNs, especially VGG19, remain incapable
of learning anything meaningful about the discrimination of the two 128-byte regions.
Another troubling fact is the sudden drops of validation accuracy during training time
for both best-performing networks, Xception and ResNet50, a phenomenon rather
indicative of overfitting. In our efforts to squeeze the best possible performance without
sacrificing training stability and generalization capacity, we investigated the tolerance
of the best performing network against two additional preprocessing techniques, namely
sample-wise standardization and feature-wise standardization. The test set success
rate of the three alternative techniques is visible in Table 6.2. Comparing with Section
6.4, we observe that CNNs are capable of surpassing the single-sample accuracy of
template attacks, reaching 88% and making the CNN-based attack particularly useful
against randomization countermeasures that limit the number of samples we can
combine. Moreover we observe that spreading the training phase over several SRAM
addresses (multiple batch) can assist classification, showing that the knowledge learned
in a certain address range may be applicable elsewhere in the SRAM.

Table 6.2: Success rate of Xception network for alternative preprocessing techniques.

Alternative Pipeline Preprocessing step Success Rate
Xception-V1 dataset-wise, robust to 84.47 %

outliers standardization
Xception-V2 sample-wise standardization 88.636 %
Xception-V3 feature-wise standardization 84.848 %

6.5.2 Multi Layer Perceptron Network Analysis

In [138], the authors presented how to use Multi Layer Perceptron (MLP) network
to perform SCA on AES. In this section we expand our NN-based analysis and we
present how to use MLP to recognize accesses to different addresses in the memory. To
improve learning results we employ dimensionality reduction techniques based on the
correlation heuristic to detect the best spatial POIs in the 300 × 300 grid, similarly
to template attacks in Section 6.4.1. Based on experiments, we discover that 5000
POIs yielded the best network training.



(a) Single-batch training. (b) Multiple-batch training.

Figure 6.16: CNN validation accuracy for single/multiple-batch training.

We define our MLP to contain a single dense layer and used the back-propagation
with NESTEROVS updater, with momentum 0.9, during training. The weights are
initialized at random and applied to a RELU activation. The MLP is also configured
with L1 and L2 regularization in order to improve the generalization. The detailed
parameters are given in Table 6.3. The analysis presented in this section is performed
using Riscure’s Inspector software package9, which is based on Deep Learning for
Java10. To observe the effectiveness of MLPs, we gradually partition the 256 bytes
of the AES LUT into classes and built the corresponding MLP for each class. We
perform an MLP analysis on 2, 4, 8, 16, 32, 64, 128, and 256 partitions (with 128,
64, 32, 16, 8, 4, 2, and 1 bytes each, respectively). The dataset is split into training,
validation and test sets using a 40-30-30 ratio. Then we select best hyper-parameters
for training and validation11 of our MLP network using a trial and error method. The
chosen parameters are listed in Table 6.3.

The validation accuracy for 2, 4, 8, 16, 32, 64, 128, and 256 partitions is visible in
Figure 6.17a. We have discovered that we achieve the best results for various numbers
of epochs depending on the number of partitions. We have used 30 epochs for the 2
and 4 partitions, 40 epochs for the 16 and 32 partitions, 40 epochs for the 8 partitions,
70 for the 128 partitions, and 80 for the 64 and 256 partitions. Figure 6.17a indicates
that the MLP network reaches high accuracy even for a large number of regions. To
visualize the validation set success rate we present the validation final partitioning
(for 16 partitions) in Table 6.4. The greatest values are located on the diagonal and
this indicates that the MLP learns correctly with high probability. The attack success
rates for the test traces for 2, 4, 8, 16, 32, 64, 128, and 256 partitions are presented in
Figure 6.17b; the exact accuracy values are 96%, 91%, 90%, 88%, 83%, 75%, 57%,
and 32%, respectively. As expected, these values are slightly lower for the attacking
phase than the validation ones in the learning phase. We observe that even the SR for
the 256 partitions, namely the 32% SR is significantly higher then a SR of a random

9https://tinyurl.com/jlgfx95
10https://deeplearning4j.org/
11The MLP parameters are chosen to maximize the attack success rate (which is equivalent to

accuracy).

https://tinyurl.com/jlgfx95
https://deeplearning4j.org/


Epochs 30− 80 (depends on the number of regions)
Mini-Batch 100
Learning Rate 0.003
Learning Rate Decay Rate 0.5%
Learning Rate Decay Interval 100 epochs
L1 0.001
L2 (weight decay) 0.001
Weight Initialization RELU
Activation Output Layer SOFTMAX
Loss Function NEGATIVELOGLIKELIHOOD
Updater NESTEROVS
1 Dense Layer:

- Number of Neurons: 20
- Activation Dense Layer: TANH

Table 6.3: Hyper-Parameters for training and validation.

Predicted: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Actual:
0 35 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0
1 1 30 1 0 0 0 0 0 0 0 0 0 0 0 0 0
2 1 0 27 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 40 1 1 0 0 0 0 0 0 0 0 0 0
4 2 0 0 1 31 0 0 1 0 0 0 0 1 0 0 0
5 0 1 0 1 0 28 1 0 0 0 0 0 0 0 0 0
6 0 1 0 0 0 0 37 0 0 0 0 0 0 1 0 0
7 0 0 0 1 2 1 0 26 0 0 0 0 0 0 1 0
8 0 0 0 1 0 0 0 0 26 0 0 0 0 0 0 0
9 0 0 1 0 0 1 1 0 1 30 0 0 0 0 0 0
10 0 0 0 0 0 2 0 0 1 1 37 0 1 0 0 2
11 0 1 0 1 1 0 0 1 0 1 0 34 0 1 0 0
12 0 1 0 0 0 0 0 2 1 0 0 0 34 0 0 0
13 0 0 0 0 0 0 1 1 0 0 3 0 0 32 2 0
14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 27 0
15 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 31

Table 6.4: Predicted versus actual values.

guess: 1/256 = 4%.
Observing these results, we conclude that the MLP network can be substantially

stronger than the template attacks when exploiting location leakage. We note that
it can achieve high SR using single-sample attacks, reaching 98% for 2 regions.
Continuing, it can reach a SR of 32% even when targeting single bytes in the SRAM.
Notably, the MLP classification can strongly enhance the SR of a microprobe setup
making it almost on par with the substantially more expensive photonic emission
setup. Still our comparison remains incomplete, i.e. it is unclear wheather LDA-
based template attacks or some other POI configuration are able to match the MLP
performance. An exact comparison between competing profiling/attacking SCA



(a) Blue line denotes validation accuracy and
red line denotes random guess success rate.

(b) Green line denotes attack success rate
and red line denotes random guess success
rate.

Figure 6.17: Validation accuracy for training and success rate for testing in MLP.

techniques remains an open problem.

6.6 Linking Data and Location Leakage

This chapter identified two key issues with respect to zero-day hardware exploits:
modeling the new exploit and linking it to existing attacks and countermeasures.
Sections 6.2 until 6.5 focused on modeling, providing theoretical and practical attempts
to describe the behavior of location-based leakage and gauge its impact on security.
This section focuses on the linking the location leakage dimension to the existing
data leakage dimension, aiming towards a quick integration of the novel exploit to
our existing countermeasure infrastructure. Analytically, Section 6.6.1 describes the
newly proposed Boolean Exponent Splitting technique from Tunstall et al. [209], a
scheme that aims to mitigate both data-based and location-based leakage in the
context of elliptic curve cryptography, by splitting an exponent in two Boolean shares.
Continuing, Section 6.6.2 performs an information-theoretic analysis on the proposed
scheme from the viewpoint of data-based leakage and location-based leakage. More
importantly, it links these two types of leakage in a joint hybrid attack, thus quantifying
the interaction between the novel exploit on location and the common exploit on data.

6.6.1 Boolean Exponent Splitting

The asymmetric cryptography literature has provided several techniques such as
additive, multiplicative and Euclidean splitting [55, 57] that can prevent side-channel
analysis during scalar multiplications. To the same end, Tunstall et al. [209] put
forward several Boolean splitting methods, which can be applied to Montgomery ladder
algorithms. In Algorithm 6 we recall the description of the Montgomery powering
ladder given by Joye et al. [117], i.e. we consider the ladder for the scalar multiplication



y = [k]x, where x is an element of certain algebraic group G, y is the public output of
the algorithm and k is the n-bit secret key, denoted also as kn−1 . . . k0.

Algorithm 4: Standard Montgomery Ladder

Input: x ∈ G, n-bit integer k =
∑n−1

i=0 ki 2
i

Output: y = [k]x

1 R0 ← 1G ; R1 ← x ;

2 for i = n− 1 down to 0 do
3 R¬ki ← Rki ·R¬ki ;
4 Rki ← (Rki)

2 ;

5 end

6 return R0

The standard Montgomery ladder is highly regular, i.e. a deterministic sequence of
operations is executed for an exponent of a given bit length, preventing straightforward
timing attacks. Still, whenever the secret key ki is manipulated by the device (loaded,
stored or processed) it results in 1st-order data-based leakage that can compromise
security. Similarly, register accesses such as Rki or R¬ki are key dependent operations,
resulting in 1st-order location-based leakage.

To prevent 1st-order data-based and location-based leakage, Tunstall et al. [209],
continuing the work of Izumi et al. [114], put forward Algorithm 8 which operates
similarly to the MPL, yet also performs Boolean exponent splitting. The new algorithm
splits the key k to shares a and b, each consisting of n bits and is proven secure against
1st-order attacks.

Algorithm 5: Boolean Exponent Split Montgomery Ladder

Input: x ∈ G, n-bit integers a =
∑n−1

i=0 ai 2
i and b =

∑n−1
i=0 bi 2

i

Output: y = [k]x, where k = a⊕ b
1 R0 ← 1G ; R1 ← 1G ; U0 ← x ; U1 ← x−1 ;

2 b′
R←− {0, 1} ; R¬b′ ← x;

3 for i = n− 1 down to 0 do
4 R0 ← Rbi⊕b′ ·R(bi⊕b′)⊕ai ;
5 R1 ← R0 · Ubi ;
6 b′ ← bi
7 end

8 return Rb′



6.6.2 Joint Information-Theoretic Evaluation

Having described a 1st-order probing-secure algorithm, we proceed to analyze the noise
amplification stage of Boolean exponent splitting, in order to provide the full picture
regarding the new countermeasure. We perform an evaluation of the Boolean exponent
splitting (as described by Algorithm 8) using the information-theoretic framework of
Standaert et al. [197]. Analogous approaches can be conducted for other variants of
exponent splitting algorithms, yielding very similar results. Our analysis considers two
sources of leakage, namely data-based leakage and location-based leakage (also known
as address leakage in the literature). Using both leakage sources, we demonstrate three
possible attack paths against Algorithm 8, covering multiple leakage combinations.
Analytically, we show the noise amplification stage 1) when only data-based leakage
is exploited (data attack), 2) when only location-based leakage is exploited (location
attack) and finally the noise amplification stage 3) when the adversary combines data
and location leakage (hybrid attack).

We begin by extending the current data-based notation to accommodate for
location-based leakage. So far, observable data-based leakages of a certain intermediate
value v are denoted using subscript Lv. We denote observable location-based leakages
caused by accessing register Rj (where j the register index) using subscript LR-j. To
distinguish between data-based leakage and location-based leakage we use superscript
Ldata and Lloc. In addition, we assume that the two different sources of leakage
(data, location) have different noise levels i.e. we assume homoscedastic data noise
Ndata ∼ N (0,σ2

data) and homoscedastic location noise N loc ∼ N (0,σ2
loc). Subsequently,

we use the following formula to compute the MI metric.

MI(S; Ltot) = H[S] +
∑
s∈S

Pr[s] ·
∑

m∈{0,1}

Pr[m] ·
∫

ltot∈Lζ

Pr[ltot|s,m] · log2Pr[s|ltot] dltot

where Pr[s|ltot] =

∑
m∗∈{0,1} Pr[l

tot|s,m∗]∑
s∗∈S

∑
m∗∈{0,1} Pr[l

tot|s∗,m∗]

Random variable S denotes the secret, i.e. an exponent key bit ki. Ltot denotes
the data-based or location-based leakage vector used in the evaluation and m is the
random bit that we need to sum over and originates from the splitting of ki to ai and
bi. The leakage dimension ζ is adjusted according to the case (data-only, location-only,
joint data-flocation) and to the amount of available horizontal leakage.

Data-based evaluation. The first obvious way to recover kn−1 is by observing
the data leakage of the values bn−1 and an−1 at the same time. We run the algorithm
for the first two rounds and note the intermediate values that can leak information.
We let b′ ∈R {0, 1}, then for certain loop iteration m:



i = n− 1

1. bm = bn−1 ⊕ b′

2. am = bm ⊕ an−1

3. R0 = Rbm ·Ram

4. R1 = R0 · Ubn−1

5. b′ = bn−1

i = n− 2

6. bm = bn−2 ⊕ b′

7. am = bm ⊕ an−2

8. R0 = Rbm ·Ram

9. R1 = R0 · Ubn−2

10. b′ = bn−2

As can be observed in above, the value bn−1 is accessed in the first iteration (i = n− 1)
three times, once when bm is calculated (line 1), once implicitly for the index of Ubn−1

(line 4) and finally for b′ (line 5). The value an−1 is accessed once during the first
iteration (i = n − 1) and it is not used in the second iteration (i = n − 2). We
notice that the value bn−1 is used implicitly again in the second iteration, since it
is equal to b′. An attacker observing the power leakage of this algorithm should
be able to probe at two different points in time, in order to observe both leakages
Ldataan−1

, Ldatabn−1
and eventually the key, i.e. we observe that a 2nd-order attack is possible

for this scheme. Note also that the an adversary with ability to conduct horizontal
side-channel attacks [25] could observe the leakage of bn−1 multiple times, average
them by computing L̄databn−1

= 1
4
∗∑4

j=1 L
data
bn−1

in order to reduce the noise level first and
then perform a 2nd-order attack, much like our approach in Chapters 4 and 5. The
results of the MI evaluation are visible in Figure 6.18a. As expected, the exponent
splitting scheme performs noise amplification and has a different slope compared to
an unprotected exponentiation (Algorithm 6) In addition, we observe the curve’s
horizontal shift to the right caused by the horizontal exploitation of the available
leakage, i.e. we can quantify the effect of multiple leaky points for bn−1.

(a) Data-based evaluation, w/wo horizontal
exploitation. Ltot = [Ldataan−1

,Ldatabn−1
].

(b) Location-based evaluation,using register
indexes. Ltot = [LlocU -i1

,LlocR-i2
,LlocR-i3

].

Figure 6.18: Data-based and location-based MI evaluations for Algorithms 6, 8

Location-based evaluation. Let us assume that the adversary can distinguish
between the manipulation of registers according to which address is accessed, similar



to the address-bit DPA attack described in [114]. If the adversary can sufficiently
distinguish between accesses to U0 and U1 for example, a direct consequence is recovery
of value bn−1. To mount a successful attack against Algorithm 8 using solely location-
based leakage, we need the simultaneous observation of the address of Ui1 and Ri2

and Ri3 , for indexes i1 = bn−1 (line 4) and i2 = bm (line 3) and i3 = am (line 3). Thus,
in order to recover kn−1, we need to observe leakage vector Lloc = [LlocU -i1

,LlocR-i2
,LlocR-i3

],
i.e. perform a 3rd-order attack. The results are visible in Figure 6.18b, where we can
observe the noise amplification effect that increases the curve’s slope. Naturally, if
σloc = σdata, a 3rd-order attack using only location-based leakage will be less effective
compared to a 2nd-order attack using only data-based leakage. However, depending on
the device, exploiting the address dependency may be more effective than exploiting
the data dependency. That is, the 3rd-order attack can become more efficient if
σdata > σloc, showing that ignoring location-based leakage can prove dangerous.

Hybrid leakage attack. Finally, we analyze the scenario in which an adversary
can observe both data-based and location-based leakage. Using this information the
adversary can use leakage vector L = [Ldataan−1

,LlocU -j], j = bn−1 to carry out a 2nd-order
attack that uses data leakage to recover bit an−1 and location leakage from register
U to recover bit bn−1. Since data and location leakage imply different noise levels
(σdata 6= σloc), we need to represent the available information as a three-dimensional
plot, as in Figure 6.19. The wave-like plot quantifies the attainable information with
regard to a particular data and location noise level. Thus, it assists the side-channel
evaluator to analyze the scheme’s security in a more holistic way compared to Figure
6.18a and 6.18b. Factoring in both data and location leakage demonstrates the tradeoff
between data noise and location noise. If for instance σloc � σdata in the target device,
the adversary can directly opt for the hybrid attack, instead of pursing a data-only
attack route. Moreover, linking the more recent location-based exploit to existing
attacks enables customized countermeasure design, where the designer can maximize
protection by adapting to the device-specific noise levels.

Figure 6.19: MI evaluation for Algorithm 5 exponent splitting, using a hybrid leakage
attack. Observed leakage vector L = [Ldataan−1

,LlocU -bn−1
].



6.7 Conclusions & Future Directions

In this chapter, we have revisited the potent, yet often overlooked location-based
leakage. We take the first steps towards theoretical modeling of such effects and we
put forward a simple spatial model to capture them. Continuing, we demonstrate
successful location-based attacks on a modern ARM Cortex-M4 using both standard
template attacks, CNNs and MLPs. Throughout these attacks we assess the impact
of various experimental parameters, as well as interactions with common data-based
SCA, in order to elucidate the nature and exploitability of location-based leakage.
Reconsidering the impact of zero-day vulnerabilities (such as location-based leakage),
we suggest that although such vulnerabilities are persistent in the security field, it is
possible and highly recommended to quickly integrate any new findings into existing
frameworks in order to quickly mitigate their impact and provide holistic protection
against them.

Regarding future work, we note that during the last years of side-channel research,
the community has established a multitude of potent tools (ranging from Bayesian
techniques to neural networks), all of which are particularly good at extracting the
available leakage. Still, we remain far less capable of finding the exact cause behind
it, especially in complex modern chips [12, 161]. Thus, a natural extension to this
work is to delve deeper into the electrical layer of a system-on-chip, try to identify the
“culprint” behind location leakage and ultimately diminish the emitted information. In
the same spirit, we should strive towards improved circuit modeling, similarly to the
works of Šijačić et al. [189] and Kumar et al. [129], adapt them to the spatial model
and use it in order to shorten the development-testing cycle of products.

Once again, this chapter observes a similar trend to Chapters 4 and 5, regarding
countermeasure interactions. The chapter has already analyzed masking schemes that
account for data and location leakage. Rephrasing, the location channel is yet another
parameter under consideration by the countermeasure designer. Naturally, the new
parameter is directly linked to existing attacks, prompting an joint analysis. In this
direction, we can continue towards higher-order data and location masking schemes
in order to provide fully-fledged security that encapsulates multiple side-channel
vulnerabilities.









Chapter 7

The Next Decade in Side-Channels

“Because things are the way they are, things will not stay the way they are.”

Bertolt Brecht, 1976

7.1 Conclusions

This thesis has shed light on multiple aspects of side-channel analysis, ranging from
masked cryptographic implementations to fault-resistant designs and location-based
attacks. Below we sum up the core conclusions of this thesis, as they appeared through
its chapters.

� Chapter 3 has shown that higher-order masking is not simply a theoretical
construct but it can be hosted in most modern microcontrolers. Our ability to
efficiently code protected cipher provides the various IoT devices with afford-
able, yet robust protection, thus can usher us into a new era of safe pervasive
computing.

� Chapters 4 and 5 have shown the close relationship and subtle interactions
between SCA, FI and RNG. In this process we identified numerous interactions
that resemble a “doulbe-edged sword”: dangerous for security if left unchecked,
yet potent tradeoffs if used by the designer. This detailed analysis of interactions
has led to more efficient and holistically protected cryptographic designs.

� Chapter 6 has shown the impact of location-based side-channel attacks, while
integrating them to existing protection mechanisms. Furthermore, the chapter
has showcased the effectiveness of deep learning techniques and justified their
increasing popularity in hardware security applications.

7.2 Future Directions

In this thesis, we have also identified several persisting problems such as the large
gap between theory and practice in hardware security, the limited understanding



of the nature of side-channel leakages and the increasingly large amount of design
options. This section, attempts a future sight, that is, it discusses several topics
that we deem very likely to affect the side-channel community in the coming decade.
Looking towards the future of side-channel analysis, we focus on three core topics
that we consider both important and challenging enough to prompt theoretical and
applied research. To do so, we shift towards a more critical stance against the work
carried out in this thesis and the hardware community in general. Our aim is not
to dismiss our existing work due to its imperfections, since this work led us here in
the first place. Instead, we aim to highlight current limitations and show how future
research can surpass them.

7.2.1 Searching for optimal attacks and vulnerabilities

A persisting issue of side-channel analysis is the effective exploitation of leakage in
a given dataset. The research effort in SCA has provided the community with a
plethora of tools, starting from classical statistics, moving to statistical machine
learning (template attacks, probabilistic graphic models) and ultimately to deep
learning techniques. Chapter 6 confirms in practice the potential of novel deep
learning techniques and we expect such research trends to continue in the coming
years.

However, this vast array of attack tools requires a more generic attack strategy.
As our arsenal keeps increasing, we need to identify which tools perform best, how
can they be combined and whether they are able to adapt to the changing hardware
environment. Thus, we maintain that a very promising goal for future research is to
closely investigate learning tools in the context of leakage exploitation, but also in the
context of knowledge transferability and hyper-heuristic search.

Moreover, we are recently detecting a rapidly widening gap between attack tools
and defense mechanisms. The hardware security community in general has become
increasingly capable of exploiting vulnerabilities in the SCA and FI context. For
instance, Chapter 6 has deployed deep learning techniques and substantially improved
the success rate of the SCA attack. Similarly, the improved search strategies of Carpi
et al. [48] signify faster FI attacks. However, such advanced techniques are detached
from the hardware vulnerability that causes them. Rephrasing, an evaluator that
succeeded in “1st-order univariate CPA with HW model on the Sbox output” has a
fairly clear understanding of the underlying issue and could work towards mitigating
it. On the contrary, an evaluator that succeeded in a multi-layered neural network
attack has limited ability to pinpoint and fix the root cause. Hence, we project that
this attack-defense gap will increase in the coming years and we will need to balance
our exploitation with respect to our ability of understanding it.

7.2.2 Increasing speculation and the physical layer

In most thesis chapters we have pinpointed several physical phenomena with a large
impact on side-channel security. In Chapter 3, the large gap between theory and
practice for masking schemes can be largely attributed to the discrepancy between



our theoretical assumptions (independent leakage assumption) and the phenomena
exhibited at the electrical layer (distance-based leakages, coupling, memory effects,
etc.). Unfortunately, instead of closely examining the electrical phenomena, the chapter
resorts to speculative arguments about their nature, often motivated by additional
experiments. Although the speculative arguments are thoroughly logical, they are
still very easy to falter, since they lack an in-depth view of the underlying physical
cause. A similar argument can be made for Chapter 6. The chapter puts forward
a theoretical model for location-based leakage, after close inspection of the physical
phenomenon. The spatial features suggested by the model are valid and backed by
experimental results. Still, the high complexity of the electrical layer in a SoC makes
the model stumble, since it relies on a fairly high-level view of the issue.

This increasing amount of speculation about the physical layer is also haunting the
rest of the side-channel community. A prime example is the novel work of De Cnudde et
al. [58] on coupling. The work follows a solid reasoning approach that adds progressively
countermeasures. Eliminating leakages step-by-step leads the work towards out-of-
model leakages, which in turn can be partially explained by coupling effects. Still,
this elimination process cannot provide an in-depth explanation of low-level effects,
prompting speculative discussions. Oddly, the increasing speculation about physical
phenomena bears a close resemblance to natural sciences, where the common approach
is to first formulate a hypothesis and then conduct laboratory experiments to prove or
disprove it. However, this approach in physics, chemistry or biology is largely motivated
by our limited understanding of highly complex structures, such as elusive energy
particles, cells or even living organisms. Unlike these structures, any device-under-test
in SCA is a well-studied artificial construct that can be understood and simulated
to a reasonable extent. Since this is the case, the community should strive more
towards precise modeling and experimentation and rely less on speculative discussions.
In addition, moving the physical layer’s security requirements to higher abstraction
layers can also be problematic. For instance, it may be possible to construct high-level
coupling-resistant and glitch-resistant masking schemes in the robust probing model
of Faust et al. [84], yet a limited understanding of coupling and glitches can lead to
overestimating the attacker’s capabilities impose a heavy computational burden in
the abstract model and hence the protected implementation.

To limit this hazardous speculation, we repeat the necessity for in-depth electrical
layer research. The main “culprit” is the lack of transparency: side-channel evaluators
are not often chip manufacturers, thus they have limited, if any, access to the physical
layer of a device-under-test. Consequently, the community needs to strive towards
more open designs where researchers can isolate specific effects, which in turn will
enhance abstract models (such as the robust probing model) with the necessary
information.

7.2.3 Automating interactive and parametric protection

We have seen that after identifying a hardware vulnerability, the standard approach
is a three-stage process of designing a suitable countermeasure against it, imple-
menting it in software/hardware and finally evaluating it a laboratory setting. The



direct consequence of this process is that hardware security components such as SCA
countermeasures, FI countermeasures, RNG and the underlying physical layer are
often analyzed and evaluated in isolation from each other. In numerous ocasions,
this isolation can weaken protection, lure the device evaluator into a false sense of
security or result in suboptimal devices. Chapter 5 has examined such interactions
between previously isolated SCA and FI countermeasures, demonstrating how various
fault injection countermeasures can reveal additional side-channel information to the
adversary. Likewise, Chapter 4 investigated the impact of RNG on popular counter-
measures like masking and shuffling. The exploration of these isolated components
led to randomness recycling, a technique that offers effective protection, while keeping
the cost affordable. In the same manner, the location-based vulnerabilities of Chapter
6 led to new countermeasures that must not be isolated and should be linked it to
existing protection mechanisms.

Overall, reviewing the state of hardware security reveals many aspects that are
examined in isolation. We observe that, unfortunately, the whole is more than the sum
of its parts, since unforeseen interactions can hinder the development of secure devices.
The design of a secure device often dissolves into isolated attempts at addressing various
vulnerabilities such as SCA, location-based SCA, FI and others. Although targeted
countermeasures can guarantee the effective protection of a problematic component,
they largely ignore possible hazardous interactions. Consequently, hardware security
is often trapped in a vicious cycle of discovering and securing vulnerabilities, while
neglecting the function creep introduced by new countermeasures.

As a result, we maintain that future work must strive towards interactive and
parametric design for countermeasures. Ideally, this new design paradigm should
replace isolated countermeasures with a process that integrates a priori the multiple
(and often conflicting) security requirements during the design phase of a product.
Instead of viewing a countermeasures as standalone components, we opt to view them
as an integrated system where they interact between each other and thus the designer
needs to strike the correct balance. Working towards robust models that integrate
the majority of countermeasures can result in a unified treatment and offer numerous
combinations of countermeasures to choose from. Such plethora of choices calls for
an automated selection process that will select the countermeasure parameters that
maximize protection, minimize cost and help us move from standard design processes
to a more tweakable automated parametric approach.
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Domagoj Jakobovic, Progress in Cryptology - INDOCRYPT 2014”

� Optimality and beyond: The case of 4x4 S-boxes, Stjepan Picek, Barış Ege,
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[61] Jean-Sébastien Coron. Higher order masking of look-up tables. In Advances in
Cryptology - EUROCRYPT 2014 - 33rd Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Copenhagen, Denmark,
May 11-15, 2014. Proceedings, pages 441–458, 2014.

[62] Jean-Sebastien Coron. Formal verification of side-channel countermeasures via
elementary circuit transformations. Cryptology ePrint Archive, Report 2017/879,
2017. https://eprint.iacr.org/2017/879.
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be in software? In Jean-Sébastien Coron and Jesper Buus Nielsen, editors,
Advances in Cryptology — EUROCRYPT 2017, volume 10210, pages 567–597,
2017.

[93] Joey Green, Arnab Roy, and Elisabeth Oswald. A systematic study of the impact
of graphical models on inference-based attacks on AES. IACR Cryptology ePrint
Archive, 2018:671, 2018.
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